
1

Abstract

The DBMS of various data models have proliferated into many companies, and become their

legacy databases. Conventional databases are associated with a plurality of database models.

Generally database models are distinct and not interoperable. Data stored in a database under a

particular database model can be termed as “siloed data”. Each database model acts as an

individual silo such that data stored in one database silo is typically not readily accessible or

interoperable with data stored in another database silo. Accordingly, a DBMS associated with a

database silo as data stored under a first database model, is generally not interoperable with

another database management system associated with another database silo as data stored

under a second database model. This can limit the exchange of information stored in a database

where those desiring to access the information are not employing a database management

system associated with the database model related to the information.

There is a need to access these legacy databases using ODBC (open database connectivity). An

ODBC is for the users to transform a legacy database into another legacy database. This thesis

offers an architecture of Open Universal Database Gateway (OUDG) to supplement ODBC by

transforming legacy database data into Flattened XML documents, and to transform Flattened

XML document back into any other legacy database. The Flattened XML document is a

mixture of relational and XML data models, which is user friendly and data standard on the

Internet. Furthermore, Flattened XML document is a replication of legacy database, which is a

backup copy of the legacy database in case of system failure, and can be used for internet

computing and data processing in parallel, non-stop.

In other words, a source legacy database can be reengineered into a flattened XML document,

which can be furthered reengineered into another target legacy database. As a result, a legacy

database can be reengineered into another legacy database through Flattened XML document

without loss of information. In this way, an user can access any legacy database by

reengineering it into a legacy database which is accessible by the DBMS in his /her own

computer. The result of reengineering database is information lossless by the preservation of

their data semantics and data dependencies.

2

CITY UNIVERSITY OF HONG KONG

Qualifying Panel and Examination Panel

Surname: WONG

First Name: Ting Yan

Degree: Master of Philosophy

College/Department: Department of Computer Science

The Qualifying Panel of the above student is composed of:

Supervisor(s)

Dr. FONG Shi Piu Joseph Department of Computer Science

City University of Hong Kong

Co-supervisor(s)

Dr. WONG Hau San Department of Computer Science

City University of Hong Kong

Qualifying Panel Member(s)

Dr. LI Minming Department of Computer Science

City University of Hong Kong

This thesis has been examined and approved by the following examiners:

Dr. FONG Shi Piu Joseph Department of Computer Science

City University of Hong Kong

Dr. LI Minming Department of Computer Science

City University of Hong Kong

Prof. ZHOU Xiaofang School of Information Technology & Electrical Engineering

University of Queensland

3

Chapter 1 Introduction

Because of their historical importance and the existing user database for these DBMSs, these

models and systems are now referred to as legacy database systems (Ramez & Shamkant,

2011, P.56). There are many type of legacy database since 1960s. In this thesis, we focus on 4

data models only.

(1) Network database.

Data structure: It is in flea structure which allows 2 owner records pointing to the

same member, and each record can connect to any other record in a network “graph”

structure. Johnson & Johnson is still using NDB (Raima users, 2014)

(2) Relational database.

Data structure: It is in table structure. Every relation is a table which must have a

primary key with foreign key referring to a primary key of another table in values

matching. NCR is still using RDB (Relational database users, 2014)

(3) Object-Oriented database.

Data structure: It is in class structure such that a class associating with another class

by an object’s stored OID (Object Identity) referring another class object OID. Also, a

sub-class object can inherit data and method of a superclass object with the same OID

which is system generated. Objectivity and Gemstone are OODBMS

(Object-Oriented, 2014)

(4) XML.

Data structure: It is in a tree structure, with one root element. Elements are under root

elements. Each element links with multiple sub-elements. Elements can also be linked

by using IDREF attribute referring to another element attribute ID in the XML

scheme DTD (Data Type Definition). Tomcat is still using XML. (XML users, 2014)

In fact, we consider both XML and hierarchical data models are in tree structure and

therefore present them as an XML data model in this thesis.

A legacy system is any corporate computer system that isn't Internet-dependent.

Because of their historical importance and the existing user databases for these DBMSs, these

models and systems are now referred to as legacy database systems.

4

(Reference: Ramez,E., Shamkant, B.(2011), "Database Systems, Models, Languages, Design , and

Application programming", Pearson, 6th edition, P.56)

The following table show that RDB, OODB, XML, NDB are still being used in the industry.

Therefore, we consider these 4 data model are "legacy" systems.

DBMS Customers still using

in industry today

Reference for evidence

RDB NCR,

Phoebe Putney

Memorial Hospital,

John Wayne Airport

https://www.oracle.com/search/customers/

NDB Johnson & Johnson http://raima.com/customers/

IBM mainframe www.ibm.com

OODB Objectivity,

Gemstone

http://www.objectivity.com/

http://www.gemstone.com/

Orient Overseas

Container

Line (OOCL)

www.oocl.com

XML Tomcat https://tomcat.apache.org/tomcat-3.3-doc/serverxml.

html

Because IBM is still using Hierarchical DBMS, so, there should be 5 current legacy databases.

The evolution of database technologies intends to meet different users requirements. For

example, the complex Hierarchical and Network (Codasyl) databases (NDB) are good for

http://www.ibm.com/
http://www.gemstone.com/
http://www.oocl.com/
https://tomcat.apache.org/tomcat-3.3-doc/serverxml.html
https://tomcat.apache.org/tomcat-3.3-doc/serverxml.html

5

business computing on the large mainframe computers. The user friendly relational databases

(RDB) are good for end user computing on personal computers. The object‐oriented

databases (OODB) are good for multi‐media computing on mini computers. The XML

databases (XML DB) are good for Internet computing on the mobile devices. Table 1 shows

the evolution of databases on various platforms. These are first generation Hierarchical and

Network databases, second generation relational databases, and third generation

post-relational such as Object-Oriented and XML databases.

Table 1 Platforms of Legacy Database technologies

 Network

database

Relational

database

Object-Oriented

database

XML database

Computer

Language

3GL Cobol /

C

4GL, SQL/Visual

Basic

4GL, OQL XQuery, Web

service

Operations Batch Job Triggers/ Stored

procedures

Object-Oriented

features

XQuery

functions

User

Interface

Text mode Windows Windows Web pages

Machine Mainframe PC /Workstations Web services/

Browsers

Web, Virtual

machine

Flattened XML documents

Flattened XML documents are generic representation of any legacy database instance in any

legacy database data model. It is because flattened XML structure combines tree structure

and table structure data model, with relational database and object oriented database as a

table structure data model and hierarchical database, network database and XML database as

a tree structure data model. Therefore, Flattened XML can represent them as a data model.

6

Flattened XML can represent most data semantics just like other legacy database system,

relational database, object oriented database, hierarchical database, network database and XML

database. The model can represent the static data of five legacy data models only. It is not total

representation of all legacy database data models.

Data semantic include ISA, cardinality, generalization:

ISA is a relationship between a superclass and a subclass. It is defined as, a subclass relation

has same primary key as its superclass relation, and refers it as a foreign key in relational

schema in isa relationship. It can also be implemented by a subclass inheriting its superclass’s

OID and attributes in object-oriented schema. It can also be implemented by an owner record

that has same key as its member record in network schema via SET linkage. It can also be

implemented by an element links one-to-one occurrence with its sub-element in XML

schema.

Cardinality is one-to-one, one-to-many and many-to-many relationships set between two

classes. 1:n is constructed by foreign key on “many” side referring to primary key on “one”

side in relational schema. It can also be implemented by association attribute of a class object

on “one” side pointing to objects on “many” side in another class in object-oriented schema.

It can also be implemented by owner record occurrence on “one” side and member record

occurrences on “many” side in network schema. It can also be implemented by element

occurrence with IDREF on “many” side linking with element occurrence with ID on “one”

side in XML schema.

As to m:n cardinality, it can be implemented by two 1:n cardinalities with 2 “one” side

classes link with the same “many” side class.

Generalization is the relationship between one superclass and multiple subclasses.

They are in multiple isa relationships. For example A is a special kind of B, and C is also a special

kind of B, then A and C subclasses can be generalized as B superclass. In relational schema, both

superclass relation and subclass relations contain the same key, with subclass relations’ keys referring

to superclass key as foreign key in generalization. In object-oriented schema, multiple subclasses

objects contain the same OID as their superclass object in generalization. In network schema, one

owner record links with multiple member records through a SET in generalization. In XML, multiple

subclass elements and their superclass element are in 1:1 linkage with same key attribute in

7

generalization. Generalization can be implemented by multiple isa relationships such that multiple

subclasses are generalized into one superclass.

Firstly, legacy database can be transformed into flattened XML documents which can be

further transformed into another legacy database of Relational, Object-Oriented, Network and

XML data models. Flattened XML document is a valid XML document which contains a

collection of elements of various types and each element defines its own set of properties.

The internal structure of the flattened XML document data file is a relational table structure.

It has XML document tree structure syntax with internal elements in relational table structure.

It replaces primary key with ID, and foreign key with sibling IDREF as follows:

<?xml version="1.0">

<root>

 <table1 ID="…" IDREF1="…" IDREF2="…" … IDREFN="…">

 <attribute1>…</attribute1>

 …

 <attributeN>…</attributeN>

 </table1>

 …

 <tableN ID="…" IDREF1="…" IDREF2="…" … IDREFN="…">

 <attribute1>…</attribute1>

 …

 <attributeN>…</attributeN>

 </tableN>

</root>

For each table, the name of the table determines its type name and the name of property

(attribute) determines its property name. Each table defines an ID type attribute that can

uniquely identify itself and there are optional multiple IDREF type attributes that can refer to

this ID in other tables in their sibling elements. Each property XML element encloses a

property value in a proper textual representation format. In order to ensure a flattened XML

document instance to be valid, there must be either an internal or an external DTD document

8

that defines the XML structures and attribute types, in particular for those ID and IDREF type

attributes.

An open universal database gateway (OUDG) is a database middleware which provides more

flexibility for the users to access legacy databases in their own chosen data model. In other

words, users can apply OUDG to transform legacy databases into flattened XML documents,

and then further transform them into user’s own familiar legacy database for access. Since

XML is the data standard on the Internet, it becomes information highway for user to access

data.

The reason we choose flattened XML document is due to its openness for DBMS

independence. All other data models are DBMS dependent. For example, an Oracle database

can only be accessed by Oracle DBMS, and a MS SQL Server database can only be accessed

by MS SQL Server DBMS. Nevertheless, users can access flattened XML documents on the

Internet by Internet Explorer without programming. Furthermore, an Oracle user can access

an MS SQL Server database after transforming the MS SQL Server database into flattened

XML document, and then to Oracle database by OUDG.

Similarly, the reason we choose relational table structure for elements in the flattened XML

document is that relational table structure has a strong mathematical foundation of relational

algebra to implement the constraints of major data semantics such as cardinality, isa,

generalization and aggregation to meet users’ data requirements.

In fact, Vincent Lum (Lum, V.Y, 1976) attempted to propose a similar method by using

sequential file as the medium for data conversion between legacy databases in logical level

approach. But in his model, the source and target systems are limited to Hierarchical database,

network database and relational database. This thesis is a further enhancement to include

object-oriented database and XML.

The OUDG can transform legacy databases into flattened XML document, and then further

transform the flattened XML document into another target legacy database of relational,

object-oriented, XML or network. The result is that OUDG allows users transform a source

legacy database into another target legacy database which is accessible in user’s computer.

This thesis offers flattened XML documents as universal database medium for the

interoperability of all legacy databases that can be accessed by the users using their own

familiar legacy database language via OUDG. We consider hierarchical data model same as

XML data model because they are all in tree structure. The five proprietary legacy data

9

models can be interchangeable into flattened XML document as universal database as shown

in Figure 1.

Relational

Database

Hierarchical

Database

Network

Database

XML

Database

Object-Oriented

Data Model
Flattened

XML

Documents

Figure 1 Cross model platform for Legacy Databases via Flattened XML documents

OUDG has 2 phases:

Phase I: transform user’s legacy database into flattened XML documents

Phase II: transform the flattened XML document into a target’s legacy database

Each phase has 2 steps:

Step 1: schema translation from source DB to target DB

Step 2: data conversion from source DB into target DB according to the translated target DB

schema

There is a benefit for the design. Through Flattened XML in the OUDG, all legacy database

system can be converted into each other. So user can use any legacy database language to access

other legacy databases.

Because of OUDG, legacy DB of RDB, XML DB, NDB, OODB, HDB and flattened XML can be

interchangeable to each other. As a result, a company can convert all of its heterogeneous DB

into a particular legacy DB or flattened XML, as homogeneous DB, which uses a combined DB

model of users’ choice.

"The five proprietary legacy data models can be interchangeable into flattened XML document

as universal database as shown in Figure 1."

Because through XML, all legacy databases can be interchangeable, we can view them as a one

legacy database system. The legacy database can converted to another through Flattened XML.

Therefore, multiple legacy databases can be converted into one legacy database.

10

For example, RDB can be converted into XML through Flattened XML. So, the user can view the

DB as XML. Similarly, NDB and OODB can be converted into XML through Flattened XML. So, the

user can view the DB as XML.

For example, XML can be converted into RDB through Flattened XML. So, the user can view the

DB as RDB. Similarly, NDB and OODB can be converted into RDB through Flattened XML. So, the

user can view the DB as RDB.

For example, OODB can be converted into NDB through Flattened XML. So, the user can view the

DB as NDB. Similarly, RDB and XML can be converted into XML through Flattened XML. So, the

user can view the DB as XML.

For example, NDB can be converted into OODB through Flattened XML. So, the user can view the

DB as OODB.

Problems:

(1) Currently most XML documents are stored in XML database and are created on demand by

converting a few relations into an XML document. However, this approach lacks of data

semantic constraints, and is restricted to relational data model only. It cannot be converted into

other legacy data models such as object-oriented, network and XML, which is a problem for

e-commerce companies to transform their production relational database into XML documents.

(2) Most legacy database systems are proprietary. Database vendors do not facilitate tools to

export their databases to other legacy databases. Thus, companies need to use ODBC to

access other legacy databases, ie, database with no DBMS to access their target DB in their

computers, which requires programming with a lot of time effort.

(3) Most users cannot access all legacy databases because they do not know all legacy

database languages. They rely on ODBC, which is not easy to learn.

(4) It is difficult to convert legacy databases in different data models because the data

conversion of legacy database involves data models transformation.

Solution:

In computing, ODBC (Open Database Connectivity) is a standard programming language

middleware API for accessing database management systems (DBMS). OUDG has a similar

11

function of accessing different legacy database using Flattened XML as a middleware.

(Reference http://en.wikipedia.org/wiki/Open_Database_Connectivity)

Both ODBC and OUDG allow users to access a legacy DB of his/her choice through different

methods.

ODBC requires users to use an API programming solution to access a proprietary DB.

OUDG allows users to use DB conversion method to convert a legacy DB into a legacy DB model

of his/her choice for the users to access.

As a result, OUDG is an alternative solution of ODBC for user to access a legacy DB without

programming effort. Instead the user needs to use a software tool to transform the DB

conversion, such as a DB middleware as shown below:

Internet provides an economical way for people to communicate around the world. It is obvious

that businesses make use of this low cost communication method to communicate and exchange

information with their business partners. XML document can be used in a myriad of ways across

different platforms and in different applications.

This thesis offers a methodology that transforms legacy databases into an equivalent and

maintainable flattened XML document to achieve the interoperability among all legacy

http://en.wikipedia.org/wiki/Open_Database_Connectivity

12

databases because flattened XML document is user friendly and open for most computer

systems on the Internet.

Through OUDG, users can use same database language access other legacy databases including

relational, object-oriented, network and XML. The operation is more reliable and speedy

because same data can be concurrently processed by legacy database and their replicated

flattened XML document on the web at the same time.

Academic merit:

It is feasible to supplement ODBC by OUDG transforming legacy database into flattened

XML document for database access. ODBC needs programming, but OUDG can be

developed as an end user software tool.

Industrial merit:

The application of flattened XML document is for information highway on the Internet for

data warehouse, decision support systems (Fong, Li & Huang, 2003), e-commerce, and cloud

computing. The benefits are information sharing among users for database interoperability.

Application:

(1) OUDG can replace ODBC to access any legacy database by transforming them into a

universal database of flattened XML document for accessing the same data.

Long-Term Impact:

At present, most database systems are proprietary. Each DBMS vendor has software tools

which convert other legacy databases into their databases, but not vice versa for converting

their own databases into other legacy databases (Hsiao & Kamel,1989) . The result makes

legacy databases not open to each other. On the other hand, by using OUDG, any legacy

database can be transformed into any other legacy database via flattened XML documents.

The benefit is that data sharing and data conversion among legacy databases becomes

possible.

Processing:

Pre-process: We can reverse engineer legacy database schema into legacy database

conceptual schema to recover data semantics. Moreover, schema translation between legacy

database schema and flattened XML schema must be performed before data transformation

between them.

13

Step 1 Transform user’s source legacy databases into flattened XML documents:

OUDG transforms the source legacy database into flattened XML document.

Step 2 Transform flattened XML documents into user’s target legacy databases:

OUDG transforms the flattened XML documents into target’s legacy database as shown in

Figure 2.

OUDG as replacement for ODBC

Figure 2 shows the architecture of an open universal database gateway which transforms

legacy databases into each other with different data models via flattened XML document as a

supplement for open database connectivity.

14

OUDG as ODBC supplement

Schema
translation

RDBMS

Sender’s Legacy databases

Sender Legacy database Schemas

Flattened

XML

document

Users

SQL

Data
Covnersion

XML
Schema

Network
Schema

Object
Oriented
Schema

Relational
Schema

XML
document

Network
database

Object
Oriented
database

Relational
database

Flattened

XML

schema

Universal

Database

Schema
translation

Data
Covnersion

Receiver’s Legacy databases

XML
Schema

Network
Schema

Object
Oriented
Schema

Relational
Schema

XML
document

Network
database

Object
Oriented
database

Relational
database

OODBMS

Network
DBMS

XML
DBMS

Open Universal

database gateway

OQL

IDMSIDMS

XQUERY

Open Universal

database gateway

Receiver Legacy database Schemas
Internet

data

data

data

data

Source

Legacy

Database

OUDG

(data transformation from

source legacy database to

flattened XML document)

Flattened XML

Document

(As universal database)

OUDG

(data transformation from

Flattened XML document to

target legacy database

Target

Legacy

Database

OUDG as ODBC replacement

Figure 2 An open universal database gateway as supplement for open database connectivity

Data flows of Figure 2:

(1) The data semantics of an end user first legacy database schemas are captured into a meta

data or conceptual schema.

(2) Legacy database schemas are mapped into a flattened XML document schema.

(3) The data of source legacy database are transformed into a flattened XML document.

(4) The flattened XML schemas are mapped into a target legacy database schemas.

15

(5) The flattened XML document are transformed into the target legacy database according to

the mapped target legacy database schema.

Data Semantics preservation in legacy databases

Semantic constraints defined as, constraints that cannot be directly expressed in the schemas of

the data model, and hence must be expressed and enforced by the application programs. We call

these application-based or semantic constraints or business rules.

For example, the cardinality of one-to-one, one-to-many, many-to-many describe the data

volume between two data fields which are their data constraints. (Referenced, P.64, Database

Systems, Models, Languages, Design, and Application programming (6th edition), Ramez

Elmasri, Shamkant B. Navathe, Pearson 2011)

Constraints are the general rules of data, eg, 1-to-many is a rule. Semantics constraints are the

rules of relationship between data in the database.

Some of these rules can be enforced by database schema, but some of them cannot be enforced

by database schema. So, those rules that cannot be enforced by database schema is database

constraint. If the constraint of those rules cannot be enforced by database schema, programs

must be used to enforce them.

If flattened XML enforced these semantic constraints, then, constraint can be interchangeable.

Moreover, some rules are very simple, eg, foreign key, 1-to-many. While some rules are

complicated: ISA, categorization. So, flattened XML can represent all those rules, ie, rule of data.

How to prove:

They are 2 kinds semantic constraints

1) Primitive: semantic constraint such as cardinality and ISA

2) Other (Advanced data semantic constraint) such as generalization, categorization,

participation.

However, the advanced data constraint can be derived by primitive data semantics. Eg, multiple

ISA is equivalent generalization.

For example, generalization can be derivative from multiple ISA data semantics, such as, if a

part-time student is a student, and a full-time student is a student, then a part-time and a full

time student can be generalized as a student.

16

Data semantics describe data definitions and data application for users’ data requirements,

which can be captured in the database conceptual schemas. The following are the data

semantics which can be preserved among the legacy conceptual schemas and their equivalent

flattened XML schema:

(a) Cardinality: One-to-one, one-to-many and many-to-many relationships set between two

classes

A one-to-one relationship between set A and set B is defined as: For all a in A, there exists at

most one b in B such that a and b are related, and vice versa. The implementation of

one-to-one relationship is similar to one-to-many relationship.

A one-to-many relationship from set A to set B is defined as: for all a in A, there exists one or

more b in B such that a and b are related. For all b in B, there exists at most one a in A such

that a and b are related.

A many-to-many relationship between set A and set B is defined as: For all a in A, there

exists one or more b in B such that a and b are related. Similarly, for all b in B, there exists

one or more a in A such that a and b are related.

1:n is constructed by foreign key on “many” side referring to primary key on “one” side in

relational schema. It can also be implemented by association attribute of a class object on

“one” side points to another class objects on “many” side in another class in object-oriented

schema. It can also be implemented by owner record occurrence on “one” side and member

record occurrences on “many” side in network schema. It can also be implemented by

element occurrence with IDREF on “many” side links with element occurrence with ID on

“one” side in XML schema.

As to m:n cardinality, it can be implemented by two 1:n cardinalities with 2 “one” side

classes link with the same “many” side class.

 (b) Isa relationship between a superclass and a subclass

The relationship A isa B is defined as: A is a special kind of B.

A subclass relation has same primary key as its superclass relation, and refers it as a foreign

key in relational schema in isa relationship. It can also be implemented by a subclass

inheriting its superclass’s OID and attributes in object-oriented schema. It can also be

implemented by an owner record that has same key as its member record in network schema

via SET linkage. It can also be implemented by an element links one-to-one occurrence with

its sub-element in XML schema.

(c) Generalization describes the relationship between one superclass and multiple

subclasses.

17

They are in multiple isa relationships. For example A is a special kind of B, and C is also a

special kind of B, then A and C subclasses can be generalized as B superclass. In relational

schema, both superclass relation and subclass relation contain the same key, with subclass

relations’ keys referring to superclass key as foreign key in generalization. In object-oriented

schema, multiple subclasses objects contain the same OID as their superclass object in

generalization. In network schema, one owner record links with multiple member records

through a SET in generalization. In XML, multiple subclass elements and their superclass

element are in 1:1 linkage with same key attribute in generalization. Generalization can be

implemented by multiple isa relationships with multiple subclasses generalized into one

superclass.

18

Chapter 2 Framework of cross model data semantics preservation

Before data transformation, OUDG performs mapping of major data semantics of cardinality,

isa, generalization and aggregation among legacy data models as shown in Table 2:

Table 2 Data semantics implementation in legacy data models and Flattened XML document

Data model\

Data Semantic

Relational Object-Oriented Network XML (in DTD) Flattened

XML(in DTD)

1:n cardinality Many child

relations’ foreign

key referring to

same parent

relation’s

primary key.

A class’s

association

attribute refers to

another class’s

objects’ OID(s)

as a Stored OID.

An owner

record points

to many

member

records via

SET linkage.

An element

contains many

sub-elements.

The IDREF(s)

of a sibling

element refer to

an ID of

another sibling

element.

m:n cardinality A relationship

relation’s

composite key

refers to 2 other

relations’

primary keys.

2 class’s

association

attributes refer to

same third class

OID.

Two owner

records point

to same

member record

via 2 SETs

linkages.

A sub-element

of 1 element

links another

element by

IDREF

referring to ID.

A sibling

element’s 2

IDREF(s) refer

to the ID of 2

other sibling

elements under

root element.

Isa Subclass

relation’s

primary key is

also a foreign

key referring to

its superclass

relation’s same

primary key.

A subclass inherit

OID(s) and

attributes of its

superclass as

its own attributes.

An owner

record links to

a member

record in 1:1

occurrence

with same key.

An element

occurrence

links its

sub-element

occurrence in

1:1 linkage.

The IDREF of

a subclass

sibling element

data refers to

the ID of its

superclass

sibling element

with the same

key.

Generalization 2 subclass Two subclasses An owner An element The IDREF(s)

19

relations’

primary keys are

also foreign keys

referring to same

superclass

relation’s

primary keys.

inherit OID(s)

and attributes of

same superclass

as their own

additional

attributes.

record data

points to two

member

records data

with same key

under 2 SET

linkages.

occurrence

links with two

sub-elements

in 1:1

occurrence

linkages.

of 2 subclass

sibling

elements refer

to the ID of a

superclass

sibling element

with same key.

Functional dependencies

The preservation of data semantics among legacy databases can be verified by the

preservation of their data dependencies as follows:

Definition of FD (functional dependency)

Given a relation R, attribute Y of R is functionally dependent on attribute X of R, i.e., FD:

R.X R.Y, iff each X-value in R has associated with it precisely one Y value in R. Attribute

X and Y may be composite.

Definition of ID (inclusion dependency)

ID: Y Z states that the set of values appearing in attribute Y must be a subset of the set

of values appearing in attribute Z.

Definition of MVD (multi-valued dependency)

Let R be a relation variable, and let A, B and C be the attributes of R. Then B is

multi-dependent on A if and only if in every legal value of R, the set of B values matching a

given AC pair value depends on the A value, and is independent of the C value.

In general, the presentation of the data semantics of cardinality, isa, generalization and

aggregation among legacy databases schemas can be shown in Figure 3. The above data

semantics can be preserved in flattened XML documents with sibling elements only, linking

with each other via IDREF and ID as shown in Figure 4.

In this thesis, we use data dependencies FD, MVD and ID as a formal method to represent

semantic constraints of different data models.

20

Our approach is to prove that the data dependencies are preserved before and after data

transformation through OUDG.

For example, in proving one-to-many cardinality, we can use FD: any “many” side data

determine one and only one “one” side data such as each that ID can determined the student’s

department (one department many students)

Similarly, in proving isa relationship, we can use ID (Inclusion dependency) such that each part

time student‘s is a subset of all students’ id because a part-time student must be also a student.

Similarly, in proving many-to-many cardinality we can use MVD (Multi-valued dependency)

such as a student can take many courses, and a class can be taken by many students’:

MVD: student ->> class

MVD: class ->> students

FD means functional dependence. (Defined in P.12 of my thesis.) ie, a determinant can

determine the value of dependant fields. Eg, a student ID is determinant which can determine

the student age as a dependant field.

In this thesis, we use FD to specify the data constraints before and after data conversion

(transformation).

If the FD is preserved, before and after database conversion, then we claim that the data

semantics are preserved before and after database conversion.

21

Relational Schema

Relation A (A1, A2)

Relation B (B1, B2, *A1)

A A1
A2

B B1
B2

Relational conceptual
schema in EER model

R

1

m

FD: B A

B2
b21

*A1
a11

B1
b11

Relations

R1

R2

A1
a11

A2
a21

a12 a22

b22 a12b21

A A1
A2

Set AB

B B1
B2

Network conceptual
schema in Network Graph

FD: B A

Network Schema

Record Name is A

A1 Character

A2 Character

Record Name is B

B1 Character

B2 Character

Set AB

Owner is A

Member is B

B2

b21

B1

b11

Records

A

B

A1

a11

A2

a21

a12 a22

b22b12

(a) one-to-many cardinality(a) one-to-many cardinality

Object-Oriented
Conceptual schema in UML

A

A1, A2

B

B1, B2

1

m

FD: B A

Object-Oriented Schema

Class A

 Attribute A1 Char

 Attribute A2 Char

 Attribute A_B set (B)

End

Class B

Attribute B1 Char

Attribute B2 Char

Attribute B_A (A)

End

A2A1OIDA

a21#1

#2 a22a12

a11

Classes

B2B1OIDB

b21#3

#4 b22b12

b11

Stotred OID

#1

#2

Stored_OID

#3, #4

#3, #4

A
A1
A2

B B1
B2

XML conceptual schema in
DTD Graph

*

XML schema in DTD

<!ELEMENT A(B*)>

<!ATTLIST A1 CDATA #REQUIRED>

<!ATTLIST A2 CDATA #REQUIRED>

<!ELEMENT B EMPTY>

<!ATTLIST B1 CDATA #REQUIRED>

<!ATTLIST B2 CDATA #REQUIRED>

FD: B A

<A A1=”a11" A2=”a12">

 <B B1="b11">

 <B B1="b12" >

<A A2=”a21" A2=”a22">

 <B B1="b21">

 <B B1="b22" >

XML Docment

Figure 3a Data semantics preservation in equivalent legacy databases (One-to-many

Cardinality)

22

(b) many-to-many cardinality(b) many-to-many cardinality

Network Schema

Record Name is A

A1 Character

A2 Character

Record Name is B

B1 Character

B2 Character

Record Name is AB

Set AAB

Owner is A

Member is AB

Set BAB

Owner is B

Member is AB

A

Set AAB

AB

B
B1
B2

Set BAB

Network conceptual
schema in Network Graph

AB

MVD: A B
MVD: B A

B2

b21

B1

b11

Records

A

B

A1

a11

A2

a21

a12 a22

b22b12

A1
A2

Relational Schema

Relation A (A1, A2)

Relation B (B1, B2)

Relation AB (*A1, *B1)

A A1
A2

B
B1
B2

AB

n

m

Relational conceptual
schema in EER model

MVD: A B

MVD: B A

*B1
b11

B1
b11

*A1
a11

Relations

A

AB

A1
a11

A2
a21

a12 a22

b21

b21

a12

B1

b11

A1

a11
b21a12

B2
b21
b22

XML schema in DTD

<!ELEMENT A(AB*)>

<!ATTLIST A1 CDATA #REQUIRED>

<!ATTLIST A2 CDATA #REQUIRED>

<!ELEMENT AB EMPTY>

<!ATTLIST AB_iderf IDREF #REQUIRED>

<!ELEMENT B EMPTY>

<!ATTLIST B id ID CDATA #REQUIRED>

<!ATTLIST B1 CDATA #REQUIRED>

<!ATTLIST B2 CDATA #REQUIRED>

Object-Oriented Schema

Class A

 Attribute A1 Char

 Attribute A2 Char

 Attribute A_B set (B)

End

Class B

Attribute B1 Char

Attribute B2 Char

Attribute B_A set (A)

Member is B

A

A1, A2

B

B1, B2

n

m

Object-Oriented
Conceptual schema in UML

MVD: A B

MVD: B A

Classes

A2A1OIDA

a21#1

#2 a22a12

a11

B2B1OIDB

b21#3

#4 b22b12

b11

Stotred OID

#1, #2

#1, #2

Stored_OID

#3, #4

#3, #4

A
A1
A2

B
B1
B2

AB idref

id*

XML conceptual schema in
DTD Graph

MVD: A B
MVD: B A

XML Docment

<A A1=”a11", A2=”a21">

 <AB idref=”1"></AB>

<A A1=”a12", A2=”a22">

 <AB idref=”1"></AB>

 <B B1="b11" B2=”b12" id=1">

Figure 3b Data semantics preservation in equivalent legacy databases (Many-to-Many

Cardinality)

23

A

B A1
A3

A1
A2

Relational conceptual
schema in EER model

Relational Schema

Relation A (A1 , A2)

Relation B (*A1 , A3)

ID : B.A1 A.A1

A3
a31

*A1
a11

Relations

A

B

A1
a11

A2
a21

a12 a22

a32a21

B

Set

A A1
A2

A1
A3

Network conceptual
schema in Network Graph

Network Schema

Record Name is A

A 1 Character

A 2 Character

Record Name is B

A 1 Character

A 3 Character

Set AB

Owner is A

Member is B

ID : B.A1 A.A1

A1

a11

Records

A

B

A1

a11

A2

a21

a12 a22

a21

A3

a31

a32

A

A1 , A2

B

A1 , A3

Object- Oriented
Conceptual schema in UML

Object- Oriented Schema

Class A

 Attribute A1 Char

 Attribute A2 Char

End

Class B subclass of class A

Attribute A1 Char

Attribute A3 Char

End

ID : B.OIDA A.OIDA

A2A1OIDA

a21#1

#2 a22a12

a11

Classes

A1OIDB

#1

#2 a12

a11

A3

a31

a32

B

A A1
A2

A1
A3

XML conceptual schema in
DTD Graph

XML schema in DTD

<! ELEMENT A(B?)>

<! ATTLIST A1 # REQUIRED>

<! ATTLIST A2 # REQUIRED>

<! ELEMENT B EMPTY>

<! ATTLIST A1 # REQUIRED>

<! ATTLIST A3 # REQUIRED>

ID : B.A1 A.A1

<A A1=”a11 " A2=”a12">

 < B A3="a31 " >

<A A1=”a11 " A2=”a22">

 < B A3="a32 " >

XML document

Figure 3c Data semantics preservation in equivalent legacy databases (ISA

relationship)

24

A

B

o

C
A1
A4

A1
A3

A1
A2

Relational conceptual
schema in EER model

Relational Schema

Relation A (A1 , A2)

Relation B (*A1 , A3)

Relation C (*A1 , A4)

A3
a31

*A1
a11

Relations

A

B

A1
a11

A2
a21

a12 a22

a32a21

C

*A1 A4
a11 a41
a21 a42

B

Set AB

C

A A1
A2

A1
A3

Network conceptual
schema in Network Graph

Network Schema

Record Name is A

A 1 Character

A 2 Character

Record Name is B

A 1 Character

A 3 Character

Record Name is C

A 1 Character

A 4 Character

Set AB

Owner is A

Member is B

Set AC

Owner is A

Member is C

Set AC

Records
A

B

A1

a11

A2

a21

a12 a22

C

A4

a41

a42

A1

a11

a12

*A1 A3
a11 a31
a21 a32

ID : B.A1 A.A1

ID : C.A1 A.A1

ID : B.A1 A.A1

ID : C.A1 A.A1

B C

A
A1
A2

,A1
A3

A1
A4

XML conceptual schema in
DTD Graph

XML schema in DTD

<! ELEMENT A (B , C)>

<! ATTLIST A1 # REQUIRED>

<! ATTLIST A2 # REQUIRED>

<! ELEMENT B EMPTY>

<! ATTLIST A1 # REQUIRED>

<! ATTLIST A3 # REQUIRED>

<! ELEMENT C EMPTY>

<! ATTLIST A1 # REQUIRED>

<! ATTLIST A4 # REQUIRED>

< A A1=”a11 " A2=”a12">

 < B A1=”a11 " A3="a31 " >

<A A1=”a21 " A2=”a22">

 <C A1=”a11 " A4="a41 " ></C>

XML document

A

A1 , A2

B

A1 , A3

A1
A4

C

A1 , A4

Object- Oriented
Conceptual schema in UML

Object- Oriented Schema

Class A

 Attribute A1 Char

 Attribute A2 Char

End

Class B subclass of class A

Attribute A1 Char

Attribute A3 Char

End

Class C subclass of class A

Attribute A1 Char

Attribute A4 Char

End

A2A1OIDA

a21#1

#2 a22a12

a11

Classes

A1OIDA

#1 a11

A1OIDA

#1 a11

A2

a21

A3

a31

A

B C

ID : B.OIDA A.OIDA

ID : C.OIDA A.OIDA

ID : B.A1 A.A1

ID : C.A1 A.A1

Figure 3d Data semantics preservation in equivalent legacy databases (Generalization)

25

B1 B A A1

idref
id

Flattened XML conceptual
schema in DTD Graph

ABC

idref
id

Flattened XML Document schema in DTD

<! ELEMENT ROOT (A , AB , B)>

<! ELEMENT A EMPTY >

<! ATTLIST A id ID # REQUIRED >

<! ATTLIST A A 1 CDATA # REQUIRED >

<! ELEMENT B EMPTY >

<! ATTLIST B id ID # REQUIRED >

<! ATTLIST B B 1 CDATA # REQUIRED >

<! ELEMENT AB EMPTY >

<! ATTLIST AB idref 1 IDREF # REQUIRED >

<! ATTLIST AB idref 2 IDREF # REQUIRED >

<! ATTLIST AB C CDATA # REQUIRED >

(b) many-to- many cardinality

MVD : A.id B.id

MVD : B.id A.id

Flattened XML Document Data

< ROOT >

 < A A1="a11 " id ="1">

 <B B1="b11 " id ="2">

 <A B C="c11 " idref1="1" idref2="2”></AB>

 <A B C="c12 " idref1="2" idref2="1”></AB>

</ ROOT >

B A A1

idref id

Flattened XML conceptual
schema in DTD Graph

Flattened XML Document schema in DTD

<! ELEMENT ROOT (A , B)>

<! ELEMENT A EMPTY >

<! ATTLIST A id ID # REQUIRED >

<! ATTLIST A A 1 CDATA # REQUIRED >

<! ELEMENT B EMPTY >

<! ATTLIST B idref IDREF # REQUIRED >

<! ATTLIST B B 1 CDATA # REQUIRED >

FD : B.iderf A.id

(a) one-to- many cardinality

Flattened XML Document Data

B1

< ROOT >

 < A A1="a11 " id ="1">

 < B B1="b11 " idref=1">

 < B B1="b12 " idref=1">

</ ROOT >

Figure 4a Data semantics preservation in flattened XML documents

(one-to-many cardinality, many-to-many cardinality)

26

< ROOT >

 < A A1="a11 " id ="A1.1">

 < B A1="a11 " idref=A1.1">

</ ROOT >

B A

idref id

Flattened XML conceptual
schema in DTD Graph

(c) isa relationship

A1A1

Flattened XML Document schema in DTD

<! ELEMENT ROOT (A , B)>

<! ELEMENT A EMPTY >

<! ATTLIST A id ID # REQUIRED >

<! ATTLIST A A 1 CDATA # REQUIRED >

<! ELEMENT B EMPTY >

<! ATTLIST B idref IDREF # REQUIRED >

<! ATTLIST B A 1 CDATA # REQUIRED >

ID : B.idref A.id

A1A C A1

idref

Flattened XML conceptual
schema in DTD Graph

B

idref
id

(d) generalization

A1

Flattened XML Document Data

< ROOT >

 < A A1="a11 " id ="1">

 < A A1="a12 " id ="2">

 <B A1="a 11 " idref=1">

 <C A1="a11 " idref=2"></C>

</ ROOT >

Flattened XML Document schema in DTD

<! ELEMENT ROOT (A,B,C)>

<! ELEMENT A EMPTY >

<! ATTLIST A id ID # REQUIRED >

<! ATTLIST A A1 CDATA # REQUIRED >

<! ELEMENT B EMPTY >

<! ATTLIST B idref IDREF # REQUIRED >

<! ATTLIST B A1 CDATA # REQUIRED >

<! ELEMENT C EMPTY >

<! ATTLIST C idref IDREF # REQUIRED >

<! ATTLIST C A1 CDATA # REQUIRED >

ID : B.idref A.id

ID : C.idref A.id

Figure 4b Data semantics preservation in flattened XML documents

(ISA, generalization)

27

Case 1: Mapping relational scheme into Flattened XML schema

Many data semantics in RDB are implemented by primary keys and foreign keys. The corresponding

flattened XML tree structure contains id and idref for each element. Therefore, the generic approach

is to export all primary keys and foreign keys as id and idref type attributes respectively. Also, all the

attributes in Relation A (PKA, Attr1, … Attrn) in RDB are mapped to all the attributes in element A (PKA,

Attr1, … Attrn, id) in Flattened XML. Similarly all the attributes in Relation B(PKB, Attr1, … Attrn, *PKA)

in RDB are mapped to all the attributes in element B(PKB, Attr1, … Attrn, idref) in Flattened XML as

shown in Figure 5.

one-to-many cardinality

Given parent relation A and its child relation B, each child relation B foreign key can determine its

parent relation primary key. Similarly, each corresponding sibling element B’s idref can determine its

associated sibling element A’s id. Both functional dependencies are equivalent because they

represent the same data semantic of one-to-many such that each A corresponds to many B.

ISA Relationship

Given a superclass relation A and a subclass relation B, the primary key of subclass B is asubset of its

superclass relation A same primary key.

Similarly, given 2 sibling elements A and B, the idref of element B is a subset of the id of element A.

These 2 inclusion dependencies are equivalent to each other, because they represent the same data

semantic ISA such that each subclass data B must appear in its superclass data A.

many-to-many cardinality

Given a relation A, a relation B and their relationship relation AB, each primary key of relation A can

determine many primary keys of relation B through their relationship relation AB in multi-valued

dependency.

Similarly, given sibling element A, element B and their associate element AB, the id of element A can

determine many id(s) of element B through their associated sibling element AB. Similarly, the id of

element B can determine many id(s) of element A through their associated sibling element AB.

These 2 multi-valued dependency are equivalent to each other because they represent the same

data semantic of many-to-many cardinality.

 (Note: 2 one-to-many cardinalities is equivalent to one many-to-many cardinality).

28

Case 2: Mapping Flattened XML schema into relational scheme

Many data semantics in flattened XML tree structure contains id and idref for each element. The

corresponding RDB are implemented by artifact primary keys and artifact foreign keys. Therefore,

the generic approach is to export all id and idref attributes as artifact primary keys and artifact

foreign keys respectively.

Also, all the attributes in element A (Attr1, … Attrn, id) in Flattened XML are mapped to all the

Relation A (OIDA, Attr1, … Attrn) in RDB and the OIDA will become the artifact key which is the primary

key in relation A. Similarly all the attributes in element B(OIDB, Attr1, … Attrn, idref) in Flattened XML

are mapped to all the attributes in Relation B(OIDB, Attr1, … Attrn, * OIDA) in RDB and the idref will

become the artifact foreign key in relation B as shown in Figure 5b.

one-to-many cardinality

Given 2 sibling element A and B in flattened XML, sibling element B’s idref can determine its

associated sibling element A’s id. Similarly, given parent relation A and its child relation B in the

corresponding RDB, each child relation B artifact foreign key can determine its parent relation

artifact primary key. Both functional dependencies are equivalent because they represent the same

data semantic of one-to-many such that each A corresponds to many B.

ISA Relationship

Given 2 sibling element A and B in flattened XML, the idref of element B is a subset of the id of

element A. Given a superclass relation A and a subclass relation B in the corresponding RDB, the

artifact primary key of subclass B is a subset of its superclass relation A artifact primary key.

These 2 inclusion dependencies are equivalent to each other, because they represent the same data

semantic ISA such that each subclass data B must appear in its superclass data A.

many-to-many cardinality

Given sibling element A, element B and their associate element AB in flattened XML, the id of

element A can determine many id(s) of element B through their associated sibling element AB. Also,

the id of element B can determine many id(s) of element A through their associated sibling element

AB. Similarly, given a relation A, a relation B and their relationship relation AB, each artifact primary

key of relation A can determine many artifact primary key of relation B through their relationship

relation AB in multi-valued dependency.

These 2 multi-valued dependency are equivalent to each other because they represent the same

data semantic of many-to-many cardinality.

 (Note: 2 one-to-many cardinalities is equivalent to one many-to-many cardinality).

29

(a) one-to-many cardinality

A PKA

B PKB

Relational conceptual
schema in EER model

R

1

m

FD: PKB PKA

B A

idref id

Flattened XML conceptual
schema in DTD Graph

PKB PKA

FD: B.idref A.id

Mapping: Relation A(PKA, Attr1, … Attrn) → Element A(PKA, Attr1, … Attrn, id)

 Relation B(PKB, Attr1, … Attrn, *PKA) → Element B(PKB, Attr1, … Attrn, idref)

 (b) ISA Relation

A PKA

B PKA

Relational conceptual
schema in EER model

ISA

ID : *PKA PKA

B A

idref id

Flattened XML conceptual
schema in DTD Graph

PKA PKA

ID: B.idref A.id

Mapping: Relation A(PKA, Attr1, … Attrn) → Element A(PKA, Attr1, … Attrn, id)

 Relation B(*PKA , PKB, Attr1, … Attrn,) → Element B(PKA, Attr1, … Attrn, idref)

(c) many-to-many cardinality

A PKA

B PKB

Relational conceptual
schema in EER model

AB

m

n

MVD1: A.PKA B.PKB

MVD2: B.PKB A.PKA

A B

idref2

id2

Flattened XML conceptual
schema in DTD Graph

AB

idref1

id1

MVD3: A.id1 B.id2

MVD4: B.id2 A.id1

Mapping: Relation A(PKA, Attr1, … Attrn) → Element A(PKA, Attr1, … Attrn, id1)

 Relation B(PKB, Attr1, … Attrn) → Element B(PKB, Attr1, … Attrn, id2)

 Relation AB(*PKA, *PKB) → Element AB(idref1, idref2)

30

Figure 5a Mapping from Relational to Flattened XML schema

(a) one-to-many cardinality

A OIDA

B OIDB

Relational conceptual
schema in EER model

R

1

m

FD: OIDB OIDA

B A

idref id

Flattened XML conceptual
schema in DTD Graph

FD: B.idref A.id

Mapping: Relation A(OIDA, Attr1, … Attrn) ← Element A(Attr1, … Attrn, id)

 Relation B(OIDB, Attr1, … Attrn, *OIDA) ← Element B(Attr1, … Attrn, idref)

 (b) ISA Relation

A OIDA

B OIDA

Relational conceptual
schema in EER model

ISA

ID : *OIDA OIDA

B A

idref id

Flattened XML conceptual
schema in DTD Graph

ID: B.idref A.id

Mapping: Relation A(OIDA, Attr1, … Attrn) ← Element A(Attr1, … Attrn, id)

 Relation B(OIDA, PKB, Attr1, … Attrn,) ← Element B(Attr1, … Attrn, idref)

(c) many-to-many cardinality

A OIDA

B OIDB

Relational conceptual
schema in EER model

AB

m

n

MVD1: A.OIDA B.OIDB

MVD2: B.OIDB A.OIDA

A B

idref2

id2

Flattened XML conceptual
schema in DTD Graph

AB

idref1

id1

MVD3: A.id1 B.id2

MVD4: B.id2 A.id1

Mapping: Relation A(OIDA, Attr1, … Attrn) ← Element A(Attr1, … Attrn, id1)

 Relation B(OIDB, Attr1, … Attrn) ← Element B(Attr1, … Attrn, id2)

 Relation AB(*OIDA, * OIDB) ← Element AB(idref1, idref2)

Figure 5b Mapping from Flattened XML schema to Relational schema

31

Case 3: Mapping Network schema into Flattened XML scheme

Many data semantics in NDB are implemented by set, and each set contains owner and member.

The corresponding flattened XML tree structure contains sibling element with an id and another

associated sibling element with idref. Therefore, the generic approach is to export NDB owner

record and member record to their corresponding sibling elements.

Also, all the attributes in Record A (KA, Attr1, … Attrn) in NDB are mapped to all the attributes in

element A (KA, Attr1, … Attrn, id) in Flattened XML. Similarly all the attributes in Record B(KB, Attr1, …

Attrn) in NDB are mapped to all the attributes in element B(KB, Attr1, … Attrn, idref) in Flattened XML

as shown in Figure 6a.

one-to-many cardinality

Given owner record A and its member record B, each key attribute of member record B can

determine key attribute of owner record. Similarly, each corresponding sibling element B’s idref can

determine its associated sibling element A’s id. Both functional dependencies are equivalent

because they represent the same data semantic of one-to-many such that each A corresponds to

many B.

ISA Relationship

Given an owner record A and a member record B, the key attribute of record B is a subset of the key

attribute of its owner record A.

Similarly, given 2 sibling elements A and B, the idref of element B is asubset of the id of element A.

These 2 inclusion dependencies are equivalent to each other, because they represent the same data

semantic ISA such that each subclass data B must appear in its superclass data A.

many-to-many cardinality

Given an owner record A, an owner record B and their common member AB, each key attribute of

record A can determine many key attribute of record B through their common member AB in

multi-valued dependency.

Similarly, given sibling element A, element B and their associate element AB, the id of element A can

determine many id(s) of element B through their associated sibling element AB. Similarly, the id of

element B can determine many id(s) of element A through their associated sibling element AB.

These 2 multi-valued dependencies are equivalent to each other because they represent the same

data semantic of many-to-many cardinality. (Note: 2 one-to-many cardinalities is equivalent to one

many-to-many cardinality).

32

Case 4: Mapping Flattened XML scheme into Network schema

Flattened XML is tree structure and contains sibling element with an id and another associated

sibling element with idref.

Many data semantics in the corresponding NDB are implemented by set, and each set contains

owner and member. Therefore, the generic approach is to export flattened XML element and sibling

elements to their corresponding NDB owner record with artifact primary OID and member record.

Also, all the attributes in sibling element A (Attr1, … Attrn, id) in flattened XML are mapped to all the

attributes in Record A (OIDA, Attr1, … Attrn) in NDB. Similarly all the attributes in element B(Attr1, …

Attrn, idref) in flattened XML are mapped to all the attributes in Record B(OIDB, Attr1, … Attrn) in NDB

as shown in Figure 6b.

one-to-many cardinality

Given element A and its sibling element B, each corresponding sibling element B’s idref can

determine its associated sibling element A’s id. Similarly, given owner record A and its member

record B, each occurrence of member record B can determine an occurrence of owner record. Both

functional dependencies are equivalent because they represent the same data semantic of

one-to-many such that each A corresponds to many B.

ISA Relationship

Given element A and its sibling element B, 2 sibling elements A and B, the idref of element B is a

subset of the id of element A. Similarly, given an owner record A and a member record B with same

artifact key OIDA, the artifact key OIDA of record B is a subset of the artifact key OIDA of its owner

record A. These 2 inclusion dependencies are equivalent to each other, because they represent the

same data semantic ISA such that each subclass data B must appear in its superclass data A.

many-to-many cardinality

Given element A, element B and their associate element AB, the id of element A can determine

many id(s) of element B through their associated sibling element AB. Also, the id of element B can

determine many id(s) of element A through their associated sibling element AB.

Similarly, given an owner record A with artifact key OIDA, an owner record B with artifact OIDA and

their common member AB, each key with artifact OIDA can determine many artifact OIDB through

their common member AB in multi-valued dependency and vice versa.

These 2 multi-valued dependencies are equivalent to each other because they represent the same

data semantic of many-to-many cardinality. (Note: 2 one-to-many cardinalities is equivalent to one

many-to-many cardinality).

33

(a) one-to-many cardinality

(b) FD: B.KB A.KA

A KA

A1

Set AB

B KB

B1

Network conceptual
schema in Network Graph

B A

idref id

Flattened XML conceptual
schema in DTD Graph

FD: B.idref A.id

KB

B1
KA

A1

Mapping: Record A(KA, Attr A1, … Attr An) ↔ Element A(KA, Attr A1, … Attr An, id)

 Record B(KB, Attr B1, … Attr Bn) ↔ Element B(KB, Attr B1, … Attr Bn, idref)

 (b) ISA Relation

ID : B.KA A.KA

B

Set AB

A

Network conceptual
schema in Network Graph

KA

A1

KB

B1

B A

idref id

Flattened XML conceptual
schema in DTD Graph

ID: B.idref A.id

KB

B1
KA

A1

Mapping: Record A(KA, Attr A1, … Attr An) ↔ Element A(KA, Attr A1, … Attr An, id)

 Record B(KA, Attr B1, … Attr Bn,) ↔ Element B(KA, Attr B1, … Attr Bn, idref)

(c) many-to-many cardinality

MVD1: KA KB

MVD2: KB KA

A

Set A

AB

B
KB

B1

Set B

Network conceptual
schema in Network Graph

KA

A1

A B

idref2

id2

Flattened XML conceptual
schema in DTD Graph

AB

idref1

id1

MVD3: id1 idref1(s)

MVD4: id2 idref2(s)

KA

A1
KB

B1

Mapping: Record A(KA, Attr A1, … Attr An) ↔ Element A(KA, Attr A1, … Attr An, id1)

 Record B(KB, Attr B1, … Attr Bn) ↔ Element B(KB, Attr B1, … Attr Bn, id2)

 Record AB(KA, KB) ↔ Element AB(idref1, idref2)

Figure 6a Mapping from Network to Flattened XML schemas

34

(a) one-to-many cardinality

FD: B.OIDB A.OIDA

A OIDA

A1

Set AB

B OIDB

B1

Network conceptual
schema in Network Graph

B A

idref id

Flattened XML conceptual
schema in DTD Graph

FD: B.idref A.id

B1 A1

Mapping: Record A(OIDA, Attr A1, … Attr An) ← Element A(Attr A1, … Attr An, id)

 Record B(OIDB, Attr B1, … Attr Bn) ← Element B(Attr B1, … Attr Bn, idref)

 (b) ISA Relation

ID : B.OIDA A.OIDA

B

Set AB

A

Network conceptual
schema in Network Graph

OIDA

A1

OIDA

B1

B A

idref id

Flattened XML conceptual
schema in DTD Graph

ID: B.idref A.id

B1 A1

Mapping: Record A(OIDA, Attr A1, … Attr An) ← Element A(Attr A1, … Attr An, id)

 Record B(OIDA, Attr B1, … Attr Bn,) ← Element B(Attr B1, … Attr Bn, idref)

(c) many-to-many cardinality

MVD1: A.OIDA KB

MVD2: B.OIDB KA

A

Set A

AB

B
OIDB

B1

Set B

Network conceptual
schema in Network Graph

OIDA

A1

A B

idref2

id2

Flattened XML conceptual
schema in DTD Graph

AB

idref1

id1

MVD3: id1 idref1(s)

MVD4: id2 idref2(s)

A1 B1

Mapping: Record A(OIDA, Attr A1, … Attr An) ← Element A(Attr A1, … Attr An, id1)

 Record B(OIDB, Attr B1, … Attr Bn) ← Element B(Attr B1, … Attr Bn, id2)

 Record AB(OIDA, OIDB) ← Element AB(idref1, idref2)

Figure 6b Mapping from Flattened XML schema to Network Schema

35

Case 5: Mapping Object-oriented schema into Flattened XML scheme

Many data semantics in OODB are implemented by OID and stored OID. The corresponding

flattened XML tree structure contains sibling element with an id referring to another associated

sibling element with idref. Therefore, the generic approach is to export all OIDs and stored OIDs as

id and idref type attributes respectively.

Also, all the attributes in class A (OIDA, Attr1, … Attrn) in OODB are mapped to all the attributes in

element A (Attr1, … Attrn, id) in Flattened XML. Similarly all the attributes in class B(OIDB, Attr1, …

Attrn) in OODB are mapped to all the attributes in element B(Attr1, … Attrn, idref) in Flattened XML as

shown in Figure 7.

one-to-many cardinality

Given class A and class B, each OID of class B can determine an OID of class A. Similarly, each

corresponding sibling element B’s idref can determine its associated sibling element A’s id. Both

functional dependencies are equivalent because they represent the same data semantic of

one-to-many such that each A occurrence corresponds to many B occurrences.

ISA Relationship

Given an superclass A and a subclass B, the OID of class B is asubset of the same OID of class A.

Similarly, given 2 sibling elements A and B, the idref of element B is asubset of the id of element A.

These 2 inclusion dependencies are equivalent to each other, because they represent the same data

semantic ISA such that each subclass data B must appear in its superclass data A.

many-to-many cardinality

Given a class A, a class B and their common associated class AB, each OID of class A can determine

many OID(s) of class B through their common class AB in multi-valued dependency and each OID of

associated class B can determine many OID(s) of class A through their common class AB.

Similarly, given sibling element A, element B and their associate element AB, the id of element A can

determine many id(s) of element B through their associated sibling element AB. Similarly, the id of

element B can determine many id(s) of element A through their associated sibling element AB.

These 2 multi-valued dependencies are equivalent to each other because they represent the same

data semantic of many-to-many cardinality.

(Note: 2 one-to-many cardinalities is equivalent to one many-to-many cardinality).

36

Case 6: Mapping Flattened XML scheme into Object-oriented schema

Flattened XML is tree structure and contains sibling element with an id referring to another

associated sibling element with idref. Many data semantics in the corresponding OODB are

implemented by OID and stored OID. Therefore, the generic approach is to export all id and idref

type attributes as OIDs and stored OIDs respectively.

Also, all the attributes in element A (Attr1, … Attrn, id) in Flattened XML are mapped to all the

attributes in class A (OIDA, Attr1, … Attrn) in OODB. Similarly all the attributes in element B(Attr1, …

Attrn, idref) in flattened XML are mapped to all the attributes in class B(OIDB, Attr1, … Attrn) in OODB

as shown in Figure 7.

one-to-many cardinality

Given element A and its sibling element B, each element B’s idref can determine its associated

sibling element A’s id. Similarly, class A and class B, each OID of class B can determine an OID of class

A. Both functional dependencies are equivalent because they represent the same data semantic of

one-to-many such that each A corresponds to many B.

ISA Relationship

Given element A and its sibling element B, the idref of element B is a subset of the id of element A.

Similarly, given an superclass A and a subclass B, the OID of class B is a subset of the same OID of

class A.

These 2 inclusion dependencies are equivalent to each other, because they represent the same data

semantic ISA such that each subclass data B must appear in its superclass data A.

many-to-many cardinality

Given element A, its sibling element B and their associate element AB, the id of element A can

determine many id(s) of element B through their associated sibling element AB. Also, the id of

element B can determine many id(s) of element A through their associated sibling element AB.

Similarly, given a class A, a class B and their common associated class AB, each OID of class A can

determine many OID(s) of class B through their common class AB in multi-valued dependency and

each OID of associated class B can determine many OID(s) of class B through their common class AB.

These 2 multi-valued dependencies are equivalent to each other because they represent the same

data semantic of many-to-many cardinality.

(Note: 2 one-to-many cardinalities is equivalent to one many-to-many cardinality).

37

(a) one-to-many cardinality

Object-Oriented
Conceptual schema in UML

A

OIDA, A1

B

OIDB, B1

1

m

FD: OIDB OIDA

B A

idref id

Flattened XML conceptual
schema in DTD Graph

FD: B.idref A.id

B1 A1

Mapping: Class A(OIDA, A1) ↔ Element A(Attr A1, id)

 Class B(OIDB, B1) ↔ Element B(Attr B1, idref)

 (b) ISA Relation

A

OID, A1,

B

OID, B1

Object- Oriented
Conceptual schema in UML

ID:　B.OID A.OID

B A

idref id

Flattened XML conceptual
schema in DTD Graph

B1 A1

ID:　B.idref A.id

Mapping: Class A(OID, A1) ↔ Element A(Attr A1, id)

 Class B(OID, B1) ↔ Element B(Attr B1, idref)

(c) many-to-many cardinality

Object-Oriented
Conceptual schema in UML

A

OIDA, A1

B

OIDB, B1

1

m

A

OIDA, A1

1

n

MVD: B.OIDB A.OIDA

MVD: A.OIDA B.OIDB

A B

idref2

id2

Flattened XML conceptual
schema in DTD Graph

AB

idref1

id1

MVD: A.idA B.idB

MVD: B.idB A.idA

A1 B1

Mapping: Class A(OIDA, A1) ↔ Element A(Attr A1, idA)

 Class B(OIDB, B1) ↔ Element B(Attr B1, idB)

 Class AB(OIDAB) ↔ Element AB(idrefA, idrefB)

Figure 7 Mapping between OODB schemas and Flattened XML schemas

38

Case 7: Mapping XML into Flattened XML scheme

Many data semantics in XML are implemented by element and sub-element linkage. The

corresponding flattened XML tree structure contains sibling element with an id and another

associated sibling element with idref. Therefore, the generic approach is to export the element

and sub-element linkage into the id and idref of sibling elements.

Also, all the attributes in element A (Attr1, … Attrn) in XML are mapped to all the attributes in sibling

element A (Attr1, … Attrn, id) in Flattened XML. Similarly all the attributes in sub-element B(Attr1, …

Attrn) in XML are mapped to all the attributes in sibling element B(Attr1, … Attrn, idref) in Flattened

XML as shown in Figure 8.

one-to-many cardinality

Given element A and its sub-element B, each sub-element of class B can determine of its element A.

Similarly, each corresponding sibling element B’s idref can determine its associated sibling element

A’s id. Both functional dependencies are equivalent because they represent the same data semantic

of one-to-many such that each A corresponds to many B.

ISA Relationship

Given an element A and an sub-element B, the attribute of element B is a subset of the attribute of

element A. Similarly, given 2 sibling elements A and B, the idref of element B is a subset of the id of

element A.

These 2 inclusion dependencies are equivalent to each other, because they represent the same data

semantic ISA such that each data in sub-element B must appear in its data in element A.

many-to-many cardinality

Given an element A, an element B and their common sub-element AB, each attribute of element A

can determine many attribute of element B through their common sub-element AB in multi-valued

dependency.

Similarly, given sibling element A, element B and their associate element AB, the id of element A can

determine many id(s) of element B through their associated sibling element AB. Similarly, the id of

element B can determine many id(s) of element A through their associated sibling element AB.

These 2 multi-valued dependencies are equivalent to each other because they represent the same

data semantic of many-to-many cardinality.

(Note: 2 one-to-many cardinalities is equivalent to one many-to-many cardinality).

39

Case 8: Mapping Flattened XML into XML scheme

Flattened XML is tree structure and contains sibling element with an id referring to another

associated sibling element with idref. Many data semantics in the corresponding XML are

implemented by id and stored idref. Therefore, the generic approach is to export all id and idref of

sibling elements to the element and sub-element linkage respectively.

Also, all the attributes in sibling element A (Attr1, … Attrn, id) in flattened XML are mapped to all the

attributes in element A (Attr1, … Attrn, id) in XML. Similarly all the attributes in sibling element

B(Attr1, … Attrn, idref) in flattened XML are mapped to all the attributes in sub-element B(Attr1, …

Attrn) in XML as shown in Figure 8.

one-to-many cardinality

Given sibling element A and its sibling element B in flattened XML, each corresponding sibling

element B’s idref can determine its associated sibling element A’s id. Similarly, given element A and

its sub-element B in XML, each sub-element of class B can determine its element of class A. Both

functional dependencies are equivalent because they represent the same data semantic of

one-to-many such that each A class occurrence corresponds to many B class occurencies.

ISA Relationship

Given 2 sibling elements A and B in flattened XML, the idref of element B is asubset of the id of

element A. Similarly, given an element A and a sub-element B in XML, the attribute of element B is a

subset of the attribute of element A.

These 2 inclusion dependencies are equivalent to each other, because they represent the same data

semantic ISA such that each data in sub-element B must appear in its data in element A.

many-to-many cardinality

Given sibling element A, element B and their associate element AB in flattened XML, the id of

element A can determine many id(s) of element B through their associated sibling element AB. Also,

the id of element B can determine many id(s) of element A through their associated sibling element

AB. Similarly, given an element A, an element B and their common sibling element AB in XML, each

attribute of element A can determine many attribute of element B through their common sibling AB

in multi-valued dependency.

These 2 multi-valued dependencies are equivalent to each other because they represent the same

data semantic of many-to-many cardinality.

(Note: 2 one-to-many cardinalities is equivalent to one many-to-many cardinality).

40

(a) one-to-many cardinality

A
A1
A2

B B1
B2

XML conceptual schema in
DTD Graph

*

FD: B A

B A

idref id

Flattened XML conceptual
schema in DTD Graph

B1, B2 A1, A2

FD: B.idref A.id

Root

Mapping: Element A(A1, A2, …) ↔ Element A(A1, A2, …, id)

 Element B(B1, B2,…) ↔ Element B(B1, B2,… idref)

 (b) ISA Relation

B

A

A1
A3

XML conceptual schema in
DTD Graph

A1
A2

ID: B.A1 A.A1

B A

idref id

Flattened XML conceptual
schema in DTD Graph

A1, A3 A1, A2

ID: B.idref A.id

Root

Mapping: Element A(A1, A2, …) ↔ Element A(A1, A2, …, id)

 Element B(B1, B2,…) ↔ Element B(B1, B2,… idref)

 (c) many-to-many cardinality

A
A1
A2

B
B1
B2

AB idref

id*

XML conceptual schema in
DTD Graph

MVD: A B
MVD: B A

A B

idref2

id2

Flattened XML conceptual
schema in DTD Graph

AB

idref1

id1

MVD: A.id1 B.id2

MVD: B.id2 A.id1

Root

Mapping: Element A(A1, A2, …) ↔ Element A(A1, A2, …, id)

 Element B(B1, B2,…) ↔ Element B(B1, B2,… idref)

 Element AB(idref) ↔ Element AB(idref1, idref2)

Figure 8 Mapping between XML and Flattened XML schemas

41

Chapter 3 Related Works

On data transformation

Lum et al (1976) showed how to construct data conversion languages SDDL and TDL to

extract and restrict data from source legacy database into target legacy database. They

defined two languages in this paper: (1) a language to describe the data structures, and (2) a

language to specify the mapping between source and target data.

Fong, J and Bloor,C. (1994) described mapping navigational semantics of the network

schema into a relational schema before converting data from network database to relational

database. The methodology preserves the constraints of the network database by mapping the

equivalent data dependencies of a loop-free network schema to a relational schema. The

conversion process translates the existence and navigational semantics of the network

database into a relational database without loss of information.

Fong, J (1997) suggested a methodology of the data conversion between object-oriented

database objects and Relational database. Data conversion involves unloading tuples of

relations into sequential files and reloading them into object-oriented classes files. He also

presented a methodology of transformation by using SQL Insert statements in this paper.

Fong, J and Shiu, H. (2012) proposed a new interpretive approach to exporting data in a

relational database to an XML document. They designed a Semantic Export Markup

Language as a language for data conversion process in the paper.

Fong et al.(2003b) presented a semantic metadata to preserve database constraints when

processing the database conversion. This paper also applied logical level approach for data

materialization between relational database and object-oriented database using sequential file

as medium.

I get the idea from Shoshani, A.(1975) about the logical level approach data conversion. From Fong et

al.(2003b), I try to think a semantic metadata to preserve database constraints when processing the

database conversion.

42

On Heterogeneous database

Given huge investment for a company put on heterogeneous databases, it is difficult for the

company to convert them into homogeneous databases for new applications. Therefore,

researchers have come up with a solution of universal databases that can be accessed as

homogeneous databases by the user (Fong, J. and Huang, S.M., 1999). For instance, we can

provide a relational interface to non‐relational database such as Hierarchical, Network,

Object‐Oriented and XML (Fong, J., 1996).

Hsiao, D.K. and Kamel, M.N.(1989) offered a solution of

multiple-models-and-languages-to-multiple-models-and–languages mapping to access

heterogeneous databases. This paper talked about mainframe-based heterogeneous DBMS

involved relational database and hierarchical database.

Based on Fong, J (1991), it is good to understand how to translate heterogeneous database schemas

into Extended Entity Relationship Model as a conceptual schema for information retrieval.

On Universal database

Fong et al. (2003a) applied universal database system to access universal data warehousing

for the integration of both relational databases (RDB) and object-oriented databases (OODB)

with star schema and Online Analytical Processing (OLAP) functions. A star schema is

derived from user requirements based on the integrated schema, catalogued in the metadata,

which stores the schema of RDB) and OODB. OLAP is the object oriented view of the data

warehouse through method call derived from the integrated schema.

Silverston, L. and Graziano, K. (2008) used a universal data model in a diagram to design the

conceptual schema of different legacy data models of any legacy database. Common data

model in a convenient format is needed in their design. Also, all data models are normalized

in this paper.

Because Fong, and Huang (1999) proposed using a frame model metadata to unite different data

models of various databases as a universal database, I get the idea of UDB in concrete.

43

On schema translation

Navathe et. al. (1998) offered a reverse engineering solution to extract the data semantics

from the relationships of the primary keys and foreign keys in relational schema into an

Extended Entity Relationship Model. They suggested to translate a logical hierarchical

schema or a logical network schema into a conceptual schema based on the extended entity

relationship (EER) model. The EER model is then translated into a logical relational schema.

Because Funderburk et al. (2002) proposed that a bridge is needed to develop XML based

applications in relational database technology, I think that flattened XML is a good idea to be the

middleware of UDB.

On Cloud Database or Cloud Computing

Harris, D. (2012) defined cloud database as databases in virtual machines. In this article, the

writer listed out some cloud database company and software which provide SQL services or

NoSQL services. Also, some virtualization and network-based architecture of cloud database

were described.

Wang, S.P., Ledley, R.S. (2013) defined virtual machine(VM) is the practical implementation

of virtualization. This book gives the idea how to configure and partition multiple

independent "virtual" servers into one physical servers. The advantages of VM are: (1) save

lots of hardware resources when conducting the large scale prototype of Universal Database

system. (2) act as cloud computing service to provide software as a service(SAS), platform as

a service(PAS), and infrastructure as a service(IAS). (3) with its flexibility of computing

power.

Rhoton, J. and Haukioja. R., (2013) defined cloud computing is a technology of network

computing where an application can run on several connected servers. The book provides a

concept how to implement our Universal Database in a cloud computing platform and

distributed different database model in different Virtual machine(VM) server. This book is

really helpful in the performance analysis of our research.

On Relational Interface

Fong, J (1996) applied a relational API (application program interface) to access hierarchical

and network databases by SQL, schema translation pre-processing and online transaction

44

translation. He proposed the relational API should be developed by embedded SQL programs

and providing a relational-to-hierarchical interface.

Gilmore, W.J. (2000) defined entity and its features in databases. The paper also introduced

relationship, included one-to-one, one-to-many, many-to-many. Moreover, The author

applied three normal forms by using MYSQL as example.

Janssen, C. (2014) defined a data modeling technique that graphically illustrates an

information system’s entities and the relationships between those entities. It describes how an

ERD represent the entity framework infrastructure. Also, it explains why ERD is crucial to

creating a good database design.

Fong, J (2006) published this book for describing database conversion techniques, reverse

engineering and forward engineering, and re-engineering methodology for information

systems by taking a practical approach. This book offers a systematic software engineering

approach for reusing existing database systems built with "old" technology. Many examples,

illustrations and case studies are used, making the methodology easy to follow.

Fong, J (1992) describes a method to translate from a non-relational to a relational schema.

The methodology uses reverse engineering to extract entities and relationships into an

extended entity-relationship model from the semantics of a hierarchical or network schema.

The logical equivalence of the translated relational schema with the hierarchical or network

schema is validated by verifying the preservation of the functional and inclusion

dependencies in the schemas. A reverse translation to recover the original hierarchical or

network schema is also used to validate the translation.

Chen, P. (1976) introduced Entity–Relationship (ER) modeling for unification of different

views of data: the network model, the relational model and the entity set model. In the

paper, it discussed how to handle semantics of data and use n-ary relationships when

everything is treated as an entity.

CODD, E. F. (1970) suggested the concept of a universal data sublanguage based on n-ary

relations. He also discussed that sublanguage in certain operations on relations which could

be applied to the problems of redundancy and consistency in the user's model. This was a

old paper and the idea is limited by hierarchical and relational database.

45

Fong, J (2004) presented a methodology, XTOPO to transmit relational database on the

Internet using XML document as medium. XTOPO divides an XML document hierarchical

structure into four different topologies: single sub-element (element, sub-element), multiple

sub-elements (element, multiple sub-elements), group (element, group of sub-elements) and

referral element (element, element) and capture their semantics into classification tables as a

knowledge-based repository. The view of a sender company’s information in a relational

database is mapped into four topological XML documents according to their data semantics

constraints.

Fong, J (2001) suggested Converting Relational Database into XML Documents with DOM.

Fong said the schema translation must be done before data conversion. Fong suggested that

relational databases should be denormalized by joining the normalized relations into tables

according to their data dependencies constraints. Finally, the joined tables are mapped into

DOMs, which are then integrated into XML document trees. In this paper, the writer proposed

a method to convert the relational database into XML. The data dependencies constraints in the

relational databases are represented in the relationship between Element and Sub-element in the

XML documents.

Fong, J and San Kuen Cheung (2005) translated relational schema into XML schema

definition with data semantic preservation and XSD graph. This paper is related to schema

level. Data semantics of participation, cardinality, generalization, aggregation,

categorization, N-ary and U-ary relationship are preserved in the translated XML schema

definition.

Guardalben, G. (2004). proposed a method of XML-to-RDB mapping to integrate XML and

relational data. But semantic constraints are not mentioned in this paper.

Kanagaraj, S. and Sunitha, A. (2012) proposed a method of converting relational database into

Xml document. But semantic constraints present in the source databases are not included in

the conversion.

Lee, D., Mani, M and Chu, W. W. (2002) presented three semantics-based schema

transformation algorithms. They used Inclusion Dependencies and Tuple-Generating

Dependencies (TGDs), but schema level only.

Lee, D., Mani, M and Chu, W. W. (2012) proposed a schema conversion methods between

XML and Relational Models. They used of Inclusion Dependencies, but schema level only.

46

On DBMS

Raima (2014) is a network model database. It provides all basic features of network database,

included owner/member records, set, etc. The DMBS also provides software utilities so that

we can conduct the prototype and performance analysis of UDB in window platform without

too much programming.

Oracle (2014) is a Relational Database DBMS. Oracle provides lots of function for

administrator, including memory control, SQL command for administrator, etc. Its

performance is very good in window platform. The Oracle DBMS can store and execute

stored procedures and functions within itself by PLSQL. We used Oracle as our prototype

software.

eXist (2014) is an XML DBMS and high-performance native XML database engine. It

provides a graphical user interface for execute the Xquery command. It is very user friendly

to conduct the XML performance analysis in window platform.

On Flattened XML document

Referenced from Fong et al.(2009), who converted an XML document into Relational database by

transforming XML document into flattened XML document with relational table structure by

Extensible Stylesheet Language Transformation, I can deduce that I can cover more data models in

my research. They are NDB, RDB, XML, OODB and flattened XML.

My thesis is talking about UDB(Universal Database), so it must have (1) Schema translation between

legacy DBs, then (2) Data transformation between legacy DBs, and (3) Universal DB of legacy DBs

interoperability.

In my thesis, even though it is talking about data transformation methodology, the application is UDB.

Because our UDB can access any database, ie, any database can be related to each other such that,

everyone can access it.

47

On Homogeneous database

Based on Sellis, T., Lin, C.C. and Raschid, L. (1993), who presented a solution to decompose and

store the condition elements in the antecedents of rules such as those used in production rule-based

systems in homogeneous databases environment using relational data model, I know the difference of

UDB application between homogenous and heterogeneous database.

On XML export and import

XML export and import (2014) told about that occasionally migrate data from one instance to another,

one can export the XML data from one instance and import it to another.

http://wiki.servicenow.com/index.php?title=Exporting_and_Importing_XML_Files

XML as web service

XML as web service (2014) described that XML provides the web service, ie, output the data as XML

format file, then the browser can input that XML file and display as webpage.

XML as web service (2014), http://www.altova.com/downloadxmltools.html

Compared to the above references and the other papers, this thesis has 3 uniqueness:

1. Cover more data model

All other database research only involve 2 or 3 data models in the universal database.

This thesis involves 5 data models in our research. They are NDB, RDB, XML,

OODB and flattened XML.

2. Use cloud platform

None of researcher uses cloud platform to conduct the search involve universal

database. All of our database and the UDB prototype are developed in cloud platform.

3. New idea: use flattened XML as middleware

This thesis offers an architecture of Open Universal Database Gateway (OUDG) to

transform legacy database data into Flattened XML documents, and to transform

48

Flattened XML document back into any other legacy database. We use this file format

as middleware for data conversion.

This thesis extends the work of universal database into an “open” universal database gateway.

The limitation of a universal database gateway is restricted to a particular DBMS. For

example, the user can access all legacy databases by using SQL on the non‐relational

database even though their DBMS(s) may not be all relational. Nevertheless, the restriction of

such solution is that the user must depend on a particular relational database language to

access heterogeneous databases.

This thesis offers an open database in flattened XML document. The “openness” of universal

database gateway is “flexible DBMS” independent while the universal database is “fixed

DBMS” dependent. The OUDG provides users the flexibility of choosing any DBMS for

legacy databases.

Similarly, the OUDG differs from ODBC because ODBC requires programming solution to

access various relational databases while OUDG transforms all legacy databases into each

other for e-commerce through a database gateway middleware. Furthermore, OUDG can

reengineer the obsolete Hierarchical or Network database into XML documents on the

Internet, which is the trend of IT technology.

49

Chapter 4 Methodology of open universal database gateway (OUDG)

This thesis offers OUDG as a database middleware to access legacy databases via flattened

XML documents as follows:

Source Legacy databasesFlattened XML documents Target Legacy databases

Hypothesis: Since OUDG in feasible, legacy DB and flattened XML are interchangeable, and since

flattened XML can be accessed on the internet , therefore, any legacy DB can be accessed as

flattened XML representation on the Internet. Therefore OUDG can become an end user

computing tool to connect most legacy DB, such as Internet can connect most computers.

Our contribution is, based on our theory, OUDG could act as a database middleware to access 5

legacy databases via flattened XML documents at the same time. The 5 legacy databases are

relational, hierarchical, network, object-oriented and XML database. While research from the

others only allowed 2 legacy databases transformation, e.g., relational-to-XML,

relational-to-hierarchical, etc, there is no such contribution among 5 legacy databases

interchangeable to each other in the same paper

Our theory: There are different legacy databases with different data models. They need to be

interchangeable without loss of information. Our method is using flattened XML as the

middleware to interchange among 5 legacy databases, including relational, hierarchical,

network, object-oriented and XML database.

Limitation: The theory is only limited to 5 legacy database model, relational, hierarchical,

network, object-oriented and XML database and 3 data semantic(cardinality, ISA and

generalization).

We select four data models to represent legacy databases for illustration: Network model for

network database in network structure, relational model for relational database in table

structure, XML model for XML database in tree structure, and Object-Oriented model for

Object-Oriented database in class structure. In order to develop OUDG, we apply two steps

50

methodology, transforming user’s legacy database into flattened XML documents in Step 1,

and transform the flattened XML document into a target’s legacy database in step 2.

The methodology procedure for conversion between legacy databases and the flattened XML

documents and vice versa is shown in Figure 2 with two basic steps:

Main algorithm:

Begin

 If legacy database conceptual schema does not exist

Then Reverse engineering legacy logical schema into legacy database conceptual

schema; /* pre-process */

 Transform source’s legacy database into flattened XML document; /* step 1*/

 Transform flattened XML document into a target legacy database; /* step 2 */

End;

Pre-process: Reverse engineer legacy database logical schemas into their conceptual schemas

As shown in Table 2, for the structural constraints of each legacy database, we can recover

their data semantics accordingly.

For example, to reverse relational schema into an Extended Entity Relationship model, a

classification table can be used to define the relationship between keys and attributes in all

relations, and data semantics can be recovered accordingly. A 1:n cardinality in relational

schema can be recovered from a foreign key(FKA) between two relations in classification

table, with foreign key relation on “many” side and referred primary key relation on “one”

side (Fong, J., 1992).

Similarly, we can reverse engineer object-oriented schema into UML by recovering 1:n

association between two associated objects with a Stored OID on “many” side in a class

referring to an OID on “one” side in another associated class in OODB. We can also reverse

Network schema into Network database conceptual schema Network Graph by recovering

owner record on “one” side and member records on “many” side. Similarly, we can reverse

engineer XML schema DTD into XML conceptual schema DTD Graph because their logical

and conceptual schemas are identical except the latter is in graph format.

Define a Root element.

We recover legacy database conceptual schema in a diagram. The selection of root element of

flattened XML schema represents the view of users data requirement on each legacy database.

To select a root element, its relevant information must be put into an flattened XML schema.

51

Relevance is concerned with entities that are related to an entity selected by the user for

processing. The relevant classes include the selected entity and all its related entities that are

navigable. Navigability specifies whether traversal from an entity to its related entity is

possible.

For example, given an entity relationship model as shown in Figure 9. We can select entity E

as root element for flattened XML schema. As a result, the mapped flattened XML schema is

extracted from the EER model as shown in Figure 9. On the other hand, we can also select an

artifact root element which include all entities in the ER model for data transformation as

shown in the case study.

Entity A

Entity B

Entity C Entity D

Entity E

Entity G

Entity HEntity F

Selected Entity

Revelant Entities

Element E

Element F Element H

Element G

+ +

+

R5

R3 R2

R4

R6 R7

R1

1

1

1 1 1 1

1

n

n

n

n

n

n

Extended Entity Relationship Model

Mapped Document Type Definition graph

Mapping

Figure 9 Selected “Root element” and Relevant Entities are mapped into a DTD graph

52

Step 1: Transform user’s source legacy databases into flattened XML documents

Firstly, in pre-process we capture the data semantics of a legacy database into its conceptual

schema, for example, EER model for relational database, UML for object-oriented database,

Network graph for network database and DTD graph for XML database. These data

semantics can be mapped into the flattened XML document schema by storing each data

semantic in XML DTD (data type definition) schema. The data semantics include one-to-one,

one-to-many, many-to-many cardinalities and relationship, generalizations, and which can be

mapped among the flattened XML document and the legacy databases.

Secondly, , we perform data transformation from legacy database into flattened XML

document using logical level approach (Shoshani, A.,1975, Lum, V.Y., 1976, Fong, J., 2006).

Case 1: Transform relational databases into flattened XML documents

Firstly, we perform the preprocess of mapping relational schema into flattened XML schema.

Secondly, we perform their correspondent data transformation. The Input is a relational

database and the output is an flattened XML document. The system will read relational table

according to the legacy relational schema. In one-to-many data semantic, it will post parent

and child relations into flattened sibling XML elements linked with id and idref. In

many-to-many data semantic, it will post 2 relations and their relationship relation into

flattened XML sibling elements linked with idref(s) and id(s). In isa data semantic, it will

post superclass and subclass relations into table structured XML sibling elements linked with

id and idref with the same key. In generalization data semantic, it will post superclass relation

and subclasses relations into XML sibling elements linked with id(s) and idref(s) with the

same key in sibling elements.

Preprocess algorithm: Map relational schema into flattened XML schema:

1 Begin

2 Select a root element for flattened XML schema;

3 If relation B foreign key refers to relation A primary key

4 Then begin

 /*Map relations A and B of 1:n cardinality into sibling elements A and B

 of 1:n cardinality; where A is one and B is many */

5 Map relation A into sibling element A with ID;

53

6 Map relation B into sibling element B with IDREF refer to the above

ID;

7 end;

8 If relation B has a primary key which is also a foreign key refers to

 relation A primary key

9 Then begin

 /*Map relation A isa relation B into sibling element A isa sibling element B;

 where A is subclass and B is superclass */

10 Map relation A into sibling element A with ID value of relation key

value;

11 Map relation B into sibling element B with IDREF value of the same

 relation key value;

12 end;

13 If (relation A and relation B is in 1:n cardinality) And (relation C and

relation B is in 1:n)

14 Then relation A and relation C are in m:n cardinality;

15 If (relation A isa relation B) and (relation C isa relation B)

16 Then relation A and relation C are generalized into relation B;

 /* A and C are subclasses, and B is their superclass */

17 End;

54

Process algorithm: Transform relational database to flattened XML document

Input: Relational database

Output: Flattened XML document

1 begin

2 Create a raw XML document with an arbitrary root element r

3 For each table do

4 begin

5 For each record rec do

6 begin

7 Create an XML element e named as its table name

8 If table of the record defines a primary key pk

9 then begin

10 Create an ID attribute id named table-name.column-name with value

 table-name.primary-key-value;

11 Add the above id as attribute of e;

12 end;

13 For each foreign key fk of the table do

14 begin

15 Create an IDREF attribute idref named

 primary-table-name.foreign-key-column-name with value

 primary-table-name.foreign-key-value;

16 Add the above idref as attribute of e;

17 end

18 end

19 Add e as child element of r;

20 end

55

Case 2: Transform XML databases into flattened XML documents

Firstly, we perform the preprocess of mapping XML schema into flattened XML schema.

Secondly, we perform their correspondent data transformation. The Input is an XML

document and the output is a flattened XML document. The system will read XML document

according to the XML schema. In one-to-many data semantic, it will post element and

sub-element into flattened XML document sibling elements linked with id and idref. In

many-to-many data semantic, it will post 3 elements linked with id(s) and idref(s) into

flattened XML document sibling elements linked with id(s) and idref(s). In isa data semantic,

it will post superclass and subclass elements into flattened XML document sibling elements

linked with id and idref with the same key. In generalization data semantic, it will post

element and sub-elements into flattened XML document sibling elements linked with id(s)

and idref(s) with the same key in DTD “,” separator in the flattened XML schema.

Preprocess algorithm: Map XML schema into flattened XML schema:

1 Begin

2 If element A and its sub-element B have same key attribute a1 in XML schema

3 Then begin

4 Map element A isa element B into sibling elements A isa B;

 /*A is subclass and B is superclass */

5 Map element A with attributes into sibling element A with same attributes and

 an ID value into flattened XML schema;

6 Map element B with attributes into sibling element B with same attributes and

 IDREF referring above ID value into XML schema;

7 end;

8 If (sub-element B under element A) or (element B has an IDREF referring to

 element A ID value)

9 Then begin

10 Map sibling elements A and B in 1:n cardinality into elements A and B in

 1:n cardinality;/*A is subclass & B is superclass */

11 Map element A into sibling element A wth an ID value in flattened XML

 schema;

12 Map element B into sibling element B with an IDREF referring to the above

 ID value in flattened XML schema;

13 End;

14 If (element A and element B is in 1:n cardinality) And (element C and element B

56

 is in 1:n)

15 Then element A and element C are in m:n cardinality in XML schema;

16 If (element A isa element B) and (element C isa element B)

17 Then element A and element C are generalized into element B;

 /* A,C are subclasses to superclass B */

18 End;

Process algorithm: Transform an XML document to a flattened XML document

Input: an XML document

Output: a flattened XML document

1 Begin

2 Read XML document elements instances by using depth first search;

3 While not at end of instances do

4 begin

5 For each element obtained

6 Add a sibling element with an ID attribute id with value

 “entity:sequence_number”;

7 For each sub-element obtained

8 Add a sibling element with an IDREF attribute idref with value

 “parent_element_name:seqeuence number of its element;

9 end;

10 end;

57

Case 3: Transform Object Oriented database into flattened XML document

Firstly, we perform the preprocess of mapping object-oriented schema into flattened XML schema.

Secondly, we perform their correspondent data conversion. The Input is an OODB and the output is a

flattened XML document. The system will read OODB according to OODB schema. In one-to-many

data semantic, it will post object and set of associated objects into XML sibling elements linked with

id and idref. In many-to-many data semantic, it will post 2 sets of associated objects with a common

object into XML sibling elements linked with id(s) and idref(s). In isa data semantic, it will post

superclass and subclass objects with same OID into XML sibling elements linked with id and idref

with the same key. In generalization data semantic, it will post superclass and multiple subclasses

objects into sibling elements linked with id(s) and idref(s) with the same key in DTD “,” separator in

the flattened XML document schema.

Preprocess algorithm: Map object-oriented schema into flattened XML schema:

1 Begin

2 If B is subclass of class A

3 Then begin

 /* Map classes A and class B into sibling element A and B

 where B is subclass and A is superclass */

4 Map class A with OID into sibling element A with ID value same as

 OID;

5 Map class B with same OID as above into sibling element B with

IDREF referring to the above ID value;

6 end;

7 If class A has association attribute referring to class B’s multiple objects

8 Then begin

 /*Map Classes A and B in 1:n cardinality into sibling elements B and C in

1:n cardinality where A is one and B is many */

9 Map class A with OID into sibling element A with ID value same as OID;

10 Map class B with stored OID into sibling element B with IDREF referring

58

to the above ID value;

11 End;

12 If (sibling element A and sibling element B are in 1:n cardinality) And

(sibling element C and sibling element B is in 1:n)

13 Then sibling element A and sibling element C are in m:n cardinality;

14 If (sibling element A isa sibling element B) and

 (sibling element C isa sibling element B)

15 Then sibling element A and sibling element C are generalized into sibling

 element B; /*A,C are subclasses to superclass B*/

16 End;

Process algorithm of transforming OODB to flattened XML documents

Input: An OODB instance

Output: A flattened XML document

1 Begin

2 Create a flattened XML document with a root element

3 For each class c in OODB do

4 Begin

5 For each object obj in class c do

6 Begin

7 Derive an OID for class c for object obj;

8 Create a sibling XML element for object obj as a sibling element

of flattened XML document with OID as ID type attribute;

9 End

10 For each association attribute of obj do

11 Begin

12 For each referred obj with stored OID do

13 Begin

14 Locate the corresponding sibling XML element e in flattened

 XML document:

15 Create an IDREF attribute for element e:

16 End

59

17 End

18 For each association attribute of obj do

19 Begin

20 Map the superclass object into sibling element with an ID and OID as

key value;

21 Map the subclass object with another sibling element with an IDREF

 referring to the above ID and OID as key value

22 End

23 End

24 End

Case 4: Transform Network databases into flattened XML documents

Firstly, we perform the preprocess of mapping network schema into flattened XML schema. Secondly,

we perform their correspondent data conversion. The Input is a Network database(NDB) and the

output is a table structured flattened XML document. The system will read NDB according to NDB

schema. In one-to-many data semantic, it will post owner and member records into XML sibling

elements linked with id and idref. In many-to-many data semantic, it will post 2 owners and 1

common member records into XML sibling elements linked with id(s) and idref(s). In isa data

semantic, it will post an owner and a member records into XML sibling elements linked with id and

idref with the same key. In generalization data semantic, it will post owner and member records into

table structured XML sibling elements linked with id(s) and idref(s), with the same key in the

flattened XML document schema DTD “,” separator.

Preprocess algorithm: Map Network schema into flattened XML schema:

1 Begin

2 If (owner record A has a key value attribute a1) and (member record B

under owner record A has same key value a1)

3 Then begin

 /* Map Record B isa record A into sibling element A isa sibling element B

 where A is subclass and B is superclass */

4 Map record A into sibling element A with key attribute a1 and with ID value

60

into flattened XML schema;

5 Map record B into sibling element B with same key attribute a1 and an

IDREF referring to above ID value into flattened XML schema;

6 End;

7 If member record B under owner record A

8 Then begin

 /*Map Records A and B in 1:n cardinality into sibling elements A and B in

1:n cardinality where A is one and B is many */

9 Map record A into sibling element A with ID value into flattened XML schema;

10 Map record B into sibling element B with IDREF referring to the above ID

 value into flattened XML schema;

11 End;

12 If (sibling element A and sibling element B is in 1:n cardinality) And (sibling

 element C and sibling element B is in 1:n)

13 Then sibling element A and sibling element C are in m:n cardinality;

14 If (sibling element A isa sibling element B) and (sibling element C isa sibling

 element B)

15 Then sibling element A and sibling element C are generalized into sibling

 element B;

 /* A,C are subclasses to superclass B*/

16 End;

Process algorithm: Transform a NDB to a flattened XML document

Input: A NDB instance

Output: a flattened XML document

1 Begin

2 Read NDB record occurrences by using depth first search;

3 While not at end of occurrences do

4 begin

61

5 For each owner record occurrence obtained

6 Add a sibling element with an ID attribute id with value

 “entity:sequence_number”;

7 For each member record occurrence obtained

8 Add a sibling element with an IDREF attribute idref with value

 “parent_element_name:seqeuence number of its element;

9 end;

10 end;

62

Step 2: Transform flattened XML documents into target’s legacy databases[17]

In step 2, we can translate the flattened XML schema into another legacy database schema,

followed by the data transformation of the flattened XML documents into a legacy database

according to the translated legacy database schema. In this way, each source database data

type can be read by the legacy database schema. Therefore, there is no need for physical data

type conversion in this approach as shown in Figures 2. Therefore, we can post the flattened

relational structured XML document into a legacy database of relational, object-oriented,

network or XML.

Case 1: Transform flattened XML documents into relational databases

Firstly, we perform the preprocess of mapping flattened XML schema into relational database schema.

Secondly, we perform their correspondent data conversion. The Input is a flattened XML document

and the output is a relational database. The system will read flattened XML document according to

flattened XML document schema. In one-to-many data semantic, it will post XML sibling elements

into parent and child relations. In many-to-many data semantic, it will post XML sibling elements

linked with id(s) and idref(s) into 2 parents and 1 child relations. In isa data semantic, it will post

XML sibling elements into superclass relation and sub-class relation. In generalization data semantic,

it will post XML sibling elements into a superclass relation and 2 subclass relations.

Preprocess algorithm: Map flattened XML schema into relational schema:

1 Begin

2 If (sibling element A with ID value of relation key value) and (sibling

element B with IDREF value of the same relation key value)

3 Then begin

 /* Map Siblings elements A and B into relations A and B where B is a

subclass to A */

4 Map sibling element A into relation A with primary key = ID value;

5 Map sibling element B into relation B with primary key = foreign key with

 same value;

6 End;

7 If (sibling element A with ID value) and (sibling element B with IDREF

63

value of the same value)

8 Then begin

 /* Map Sibling elements A and B in 1:n cardinality into relations A and B in

1:n cardinality where A is one and B is many*/

9 Map sibling element A into relation A with primary key = ID value;

10 Map sibling element B into relation B with foreign key referring to

primary key ID value;

11 End;

12 If (sibling element A and sibling element B is in 1:n cardinality)

And (sibling element C and sibling element B is in 1:n)

13 Then sibling element A and sibling element C are in m:n cardinality;

14 If (sibling element A isa sibling element B) and (sibling element C isa

sibling element B)

15 Then sibling A and sibling element C are generalized into sibling element B;

 /* A,C are subclasses, and B is their superclass */

16 End;

64

Process algorithm: Create RDB SQL statements from flattened XML document

Input: flattened XML document

Output: A sequence of SQL statements

1 Begin

2 Let s be an empty statement sequence;

3 For each sibling XML element with entity prefix e do

4 begin

5 Derive table name t from sibling element name of e without entity prefix;

6 For each sibling element c of e do

 /* extract attributes from the sibling-elements in flattened XML document */

7 Begin

8 Derive col from name of c without property prefix;

9 Derive val from child text node contents of c;

10 If c is the first sibling element

11 Then begin

12 Let cols = "col";

13 Let vals = "'val'";

14 End;

15 Else begin

16 Append ",col" to cols;

17 Append ",'val'" to vals;

18 End;

19 End

20 Let i = "INSERT INTO t (cols) VALUES (vals)";

21 Add i to s;

22 End

23 Return s

24 End

65

Case 2: Transform flattened XML documents into object-oriented databases

Firstly, we perform the preprocess of mapping flattened XML schema into object-oriented schema.

Secondly, we perform their correspondent data conversion. The Input is a flattened XML document

and the output is an object-oriented database. The system will read flattened XML document

according to flattened XML document schema. In one-to-many data semantic, it will post XML

sibling elements into a pair of associated objects with OID and Stored OID. In many-to-many data

semantic, it will post XML sibling elements linked with id(s) and idref(s) into a pair of associated

objects. In isa data semantic, it will post XML sibling elements into superclass and its sub-class object.

In generalization data semantic, it will post flattened structured XML sibling elements with the same

key into objects and their subclass objects with the same OID.

Preprocess algorithm: Map flattened XML schema into object-oriented schema:

1 Begin

2 If (sibling element A with key attribute a1 and an ID value) And (sibling element

 B with same key attribute a1 and an IDREF value same as the above ID value)

3 Then begin

 /* Map sibling element B isa sibling element A into class B isa class A;

 where subclass B refer to superclass A*/

4 Map sibling element A into class A with attribute a1 into object-oriented

 schema;

5 Map sibling element B into subclass B of class A in object-oriented schema;

6 end;

7 If (sibling element A with an ID value)

 And (sibling element B with an IDREF value referring to the above ID value)

8 Then begin

 /* Map sibling elements A and B in 1:n cardinality into classes A and B in 1:n

 cardinality where A is one and B is many */

9 Map sibling element A into class A with association attribute A2B referring

 to class B’s multiple objects in OODB schema;

10 Map sibling element B into class B with association attribute B2A referring

 to class A’s object in OODB schema;

66

11 end;

12 If (sibling element A and sibling element B is in 1:n cardinality)

 And (sibling element C and sibling element B is in 1:n)

13 Then sibling element A and sibling element C are in m:n cardinality;

14 If (sibling element A isa sibling element B) and (sibling element C isa sibling

 element B)

15 Then sibling A and sibling element C are generalized into sibling element B;

 /* A,C are subclass, and B is their superclass */

16 end;

Process algorithm: Create OODB statements from flattened XML documents

Input: flattened XML document

Output: A sequence of OODB OQL statements

1 Begin

2 Given sibling element A1 is with idref=id as “one” side only;

3 For i = 1 to m do

/* for each sibling element Ai with data occurrence A1….Am */

4 For j = 1 to n do

/* for each sibling element Aj data occurrence A1…An such that i≠j*/

5 Begin

6 If (sibling element Ai ID name = sibling element Ai IDREF name)

 and (sibling element Aj ID name = sibling element Ai IDREF name)

7 Then sibling element Ai isa sibling element Aj;

 /* subclass element Ai and superclass element Aj */

8 If sibling element Ai ID name = sibling element Aj IDREF name

9 Then sibling element Ai and sibling element Aj are in 1:n cardinality;

 /* element Ai links many element Aj */

10 If sibling element Ai IDREF name = sibling element Aj ID name

11 Then sibling element Ai and sibling element Aj are in n:1 cardinality;

 /* many element Ai links element Aj */

67

12 Case sibling element Ai and sibling element Aj are in

13 1:n begin

14 Output insert statement with Ai data + association attribute value “{}”;

15 Output insert statement with Aj data;

16 End;

17 n:1 begin

18 Output insert statement with Ai data;

19 Output insert statement with Aj data + association attribute null value;

20 End;

21 Isa: begin

22 Output insert statement with Ai data + to-be-inherited superclass attributes

 null value;

23 Output insert statement with Aj data;

24 End;

25 Case end;

26 End;

27 For i = 1 to m do

/* for each sibling element Ai with data occurrence A1….Am */

28 For j = 1 to n do

/* for each sibling element Aj data occurrence A1…An such that i≠j*/

29 Begin

30 Case sibling element Ai and sibling element Aj are in

31 1:n: Output update statement of Aj to replace “{}” value by selected

 OID(s);

32 n:1: Output update statement of Aj to replace null value by selected

 OID;

33 isa: Output update statement of Ai to replace null value with inherited Aj

 data by select statement;

34 case end;

35 end;

36 end

68

Case 3: Transform flattened XML documents into network databases:

Firstly, we perform the preprocess of mapping flattened XML schema into network schema. Secondly,

we perform their correspondent data conversion. Network database model is the earliest database

model among the four legacy databases being concerned. There are no standard data definition

language (DDL) and data manipulation language (DML). Database in network database model are

accessed by making function invocations of the application-programming interface (API) that comes

with the database products. Database manipulation operations are written in third-generation

languages (3GL’s) such as COBOL and C.

The Raima database is used as the reference network database implement. In order to import data to

the NDB, Raima provides utility that can read sequence data file. Therefore, the algorithm provided

below is to translate the flattened XML document file into plain text sequential file.

For example, the Raima database defines its own data definition language. To define an entity type

with properties, use a record definition:

record investor {

double money_mkt;

char name;

unique key short invID;}

To define the linkages among the entities, use the set definition:

set inv_trans {

order last;

owner investor;

member asset;}

Once the database definition is properly defined with a DDL file, Raima provides utility

application and API for creating the database.

The Input is a flattened XML document and the output is a network database. The system will read

flattened XML document according to flattened XML document schema. In one-to-many data

semantic, it will post XML sibling elements into a pair of owner and member records. In

many-to-many data semantic, it will post XML sibling elements linked with id(s) and idref(s) into 2

69

owners link with 1 member record with the same key. In isa data semantic, it will post XML sibling

elements into 1 owner and 1 member record with the same key. In generalization data semantic, it will

post XML sibling elements linked with id(s) and idref(s) into 1 owner and 2 member records with the

same key.

Preprocess algorithm: Map flattened XML schema into network schema:

1 Begin

2 If (sibling element A with an attribute a1 and an ID value) And (sibling

 element B with same attribute a1 and an IDREF value same as the above ID value)

3 Then begin

 /*Map sibling element B isa sibling element A into record B isa record A where

 B is subclass, and A is superclass */

4 Map sibling element A with key attribute a1 into owner record A with key

 attribute a1 into network schema;

5 Map sibling element B with key attribute a1 into member record B under

 record A with same key attribute a1 into network schema;

6 end;

7 If (sibling element A with an ID value)

 And (sibling element B with an IDREF value referring to the above ID value)

8 Then begin

 /* Map sibling elements A and B in 1:n cardinality into records A and B in 16 1:n

cardinality where A is one and B is many */

9 Map sibling element A with attribute ID value a1 into owner record A with 18 key

attribute a1 into network schema;

10 Map sibling element B into member record B under record A into network

 schema;

11 end;

12 If (sibling element A and sibling element B is in 1:n cardinality)

 And (sibling element C and sibling element B is in 1:n)

13 Then sibling element A and sibling element C are in m:n cardinality;

14 If (sibling element A isa sibling element B) and (sibling element C isa sibling

70

 element B)

15 Then sibling A and sibling element C are generalized into sibling element B;

 /* A,C are subclasses, and B is their superclass */

16 end;

Process algorithm Step 1: Create CSV file from flattened XML document

1 Read flattened XML document

2 For each XML element e do

3 Begin

4 Derive the internal table name t from element name of e;

5 Use t as the CSV file name;

6 For each sibling element c of e do;

7 Begin

8 Derive val from attribute contents of c;

9 If c is the first sibling element

10 Then begin

11 Let vals =’val’;

12 End;

13 Else begin

14 Let vals =’,’;

15 Append “val” to vals;

16 End;

17 Add vals to the CSV file;

18 End;

19 Export the CSV file;

20 End

71

//Step 2: Macro-call program

Macro-call: We need to use a utility provided by NDB DBMS (Raima) to import the data from CSV

file to the database. The utility is named “dbimp”. “dbimp” is in command format and only

executable in command prompt. Before we use “dbimp”, we must write a text-based import file. The

import file first defined which database we want to import data. Then, for each record, we need to

specify the CSV file to import data. This is achieved by “foreach” command and followed by the

CSV file name. After this, we used “{“ and “}” to include the record name and attribute name. We

used the keyword “field” in front of each attribute. For example,

Database !network database name

foreach “!data file name.csv” {

 record ! =”record name”

field !field name = 1;

…

Field !field name = n”

}

//Step 3: Upload data and query the NDB instance (in Raima) by computer automation

Import data to the NDB instance by use of utility “dbimp”.

If the data import successfully, all data will be query and output simultaneously.

End

72

Case 4: Transform flattened XML documents into XML databases

Firstly, we perform the preprocess of mapping flattened XML schema into XML schema. Secondly,

we perform their correspondent data conversion. The flattened XML documents format is in XML

format with three nested levels, which are root, entity element and column element, and each column

element instance encloses a text node for the column value. On the other hand, usual XML document

can be in any nested structure and the number of nested level is unlimited. Therefore, in order to

convert arbitrary XML documents into the corresponding flattened relational structured XML

document format structure, the following process is used:

The Input is a flattened XML document and the output is an XML document. The system will read

flattened XML documents according to flattened XML documents schema. In one-to-many data

semantic, it will post XML sibling elements into a pair of XML element and sub-elements. In

many-to-many data semantic, it will post XML sibling elements linked with id(s) and idref(s) into

XML elements and sub-element. In isa data semantic, it will post XML sibling elements with the

same key into XML element and sub-elements with the same key. In generalization data semantic, it

will post XML sibling elements into XML element and sub-elements with the same key.

Preprocess algorithm: Map flattened XML schema into XML schema:

1 Begin

2 If (sibling element A with an attribute a1 and an ID value) And (sibling

 element B with same attribute a1 and an IDREF value same as the above ID value)

 3 Then begin

 /*Map sibling element B isa sibling element A into element B isa element A

 where B is subclass and A is superclass */

4 Map sibling element A into element A with attribute a1 in XML schema;

5 Map sibling element B into element B with attribute a1 and IDREF value

 same as the above ID value in XML schema;

 6 end;

 7 If (sibling element A with an ID value)

 And (sibling element B with an IDREF value referring to the above ID value)

 8 Then begin

73

 /*Map sibling elements A and B in 1:n cardinality into elements A and B in 1:n

 cardinality where A is one and B is many */

9 Map sibling element A into element A in XML schema;

10 Map sibling element B into element B under element A in XML schema;

11 end;

12 If (sibling element A and sibling element B is in 1:n cardinality)

 And (sibling element C and sibling element B is in 1:n)

13 Then sibling element A and sibling element C are in m:n cardinality;

14 If (sibling element A isa sibling element B) and (sibling element C isa sibling

 element B)

15 Then sibling A and sibling element C are generalized into sibling element B;

 /* A,C are subclasses, and B is their superclass */

16 end;

Process algorithm: Post flattened XML document into an XML document

Input: A flattened XML document

Output: An XML document

1 Begin

2 Let xml = replicate of flattened XML document;

3 Call Restructure XML with xml;

4 Return xml

5 End

6 Function: Restructure XML

7 Begin

8 For each sibling XML element e with one IDREF attribute idref do

9 begin

10 Locate sibling element e’ with ID referred by idref;

11 Move e as child element of e’;

12 Remove attribute idref from element e;

13 End

14 End

74

Chapter 5 Case study with prototype

The prototype below is to prove that the methodology in Chapter 4 is feasible. By

experiment, chapter 5 emphasizes in the preservation of data constraint of functional

dependency, inclusion dependency and multi-value dependence before and after data

conversion (transformation).

The prototype is to prove that the data dependencies of a source RDB in a case study can be

transformed into an XML DB, which can be further transformed into a target RDB with the

preservation of its data semantics in the form of FD, ID and MVD.

In general, a DB (database) can be converted without any loss of information if p maps a state of

a legacy database into another legacy DB, and p’ maps a state of a legacy DB into another legacy

DB, then it can be shown that p(p’(N)) = N where N is the legacy DB before conversion.

A logistic system records the customer shipment information including which orders are

being packed and what the packing information is. Based on the relational schema below,

there are three intermediate independent entities: PL_INFORMAION recording the general

information of the shipment, PL_LINE_INFORMATION storing the packing information ―

particularly information about the BOXES ― and ORDER_INFORMATION storing the

information of orders such as the product information. A many-to-many relationship between

ORDER_INFORMATION and PL_LINE_DETAIL must be resolved early in the modeling

process to eliminate repeating information when representing PL_INFORMATION or

ORDER_INFORMATION. The strategy for resolving many-to-many relationship is to

replace the relationship with two one-to-many cardinalities. As a result, these two

one-to-many relationships are between PL_LINE_INFORMATION and PL_LINE_DETAIL,

and between ORDER_INFORMATION and PL_LINE_DETAIL. Similarly, the superclass

ORDER_INFOR MATION can be divided into two subclasses BulkOrder and

CustomerOrder in generalization as shown in Figure 10.

75

Table 3: Source Relational database

Table PL_INFORMATION

PL_INFORMA

TION_SEQNO

ISSUE_

DATE

DATA_LAST

_MODIFIED

LAST_MOD

IFIED_BY

PL_STA

TUS

PL_HEADER+RE

MARKS

SHIPMEN

T_TYPE

SHIPMEN

T_DATE

EXPERCTED_AR

RIVAL_DATE

EFG123DS 2004-07

-31

2004-08-02 JOEY S SOME GOODS

ARE BREAKABLE

TRAIN 2004-08-0

3

2004-08-03

Table PL_LINE_INFORMATION

*PL_INFROAMATI

ON-SEQNO

PL_LINE_INFOR

MATOIN_SEQNO

PACKAGE

_TYPE

LENGTH_UNIT_

OF_MEASURE

WIDTH_UNIT_O

F_MEASURE

HEIGHT_UNIT_O

F_MEASURE

WEIGHT_UNIT_O

F_MESSAGE

EFG123DS ABCV234F BOX 20 20 20 40

EFG123DS ABCN439WS BAG 7 13 10 13

Table PL_LINE_DETAIL

*PL_INFORMA

TION_SEQNO

*PL_LINE_INFOR

MATION_SEQNO

*ORDER_

NUMBER

ITEM_N

UMBER

TOTAL_PA

CKED_QTY

TOTAL_GROS

S_WEIGHT

TOTAL_VOLU

ME_LENGTH

TOTAL_VOLU

ME_WIDTH

TOTAL_VOLU

MEN_HEIGHT

EFG123DS ABCV234F 135792468 1 4 12 5 2 6

EFG123DS ABCV234F 123469999 2 1 28 8 4 6

EFG123DS ABCH439WS 135792468 1 4 12 5 2 6

Table ORDER_INFORMATION

ORDER_N

UMBER

BRAN

D

DIVISIO

N

CUSTOMER_OR

DER_NUMBER

CUSTOMER

_NUMBER

ORDER_

TPYE

MODEL_

NUMBER

MODEL_DES

CRIPTION

ORDER_

DATE

ORDERD

_QTY

PRICE_PR

E_UNIT

DISCO

UNT

135792468 ABC CLOTHIN

G

135792468 MA23456 MAIL AS1234 ADULT

T-SHIRT SIZE

M

2004-07-

27

8 10.5

123469999 DONY TOYS 123456999 MA23456 PHONE PS2 PLAYSTATIO

N

2004-07-

29

1 1399 10

Table BulkOrder

*ORDER_NUMBER CUSTOMER_NAME SIZE_INDEX ORDERED_QTY UNIT_PRICE

135792468 AMAZON S 2000 12.1

Table TailorMadeOrder

*ORDER_NUMBER CUSTOMER_NAME SIZE_INDEX ORDERED_QTY UNIT_PRICE

123469999 PETER CHAN L 3000 12.3

76

Step 1: Transform from relational database into flattened XML document:

Example 1: Transform from relational database into flattened XML document

The input relational conceptual schema in Extended Entity Relationship model

Bulk_Order
TailorMade

Order

O

PL_INFORMATION

PL_LINE_INFORMATION ORDER_INFORMATION

include

PL_LINE_DETAIL

FD: PL_LINE_INFORMATION PL_INFORMATION

FD: PL_LINE_DETAIL PL_LINE_INFORMATION, ORDER_INFORMATION

ID: (Bulk_Order | TailorMadeOrder) ORDER_INFORMATION

PL_INFORMATION_SEQNO,

ISSUE_DATE,

DATE_LAST_MODIFIED,

LAST_MODIFIED_BY,

PL_STATUS,

PL_HEADER_REMARKS,

SHIPMENT_DATE,

EXPECTED_ARRIVAL_DATE

PL_INFORMATION_SEQNO,

PL_LINE_INFORMATION_SEQN

O, PACKAGE_TYPE,

LENGTH_UNIT_OF_MEASURE,

HEIGHT_UNIT_OF_MEASURE,

WEIGHT_UNIT_OF_MEASSAGE

ORDER_NUMBER,

BRAND,

DIVISON,

CUSTOMER_ORDER_NUMBER,

CUSTOMER_NUMBER,

ORDER_TYPE, MODEL_NUMBER,

MODEL_DESCRIPTION,

ORDER_DATE, ORDERED_QTY,

RICE+PRE_UNIT, DISCOUNT

ITEM_NUMBER,

TOTAL_PACKED_QTY,

TOTAL_GROSS_WEIGHT,

TOTAL_VOLUME,

TOTAL_VOLUME_LENGTH,

TOTAL_VOLUME_WIDTH,

TOTAL_VOLUME_HEIGHT

ORDER_NUMBER,

CUSTOMER_NAME

SIZE_INDEX,

ORDERED_QTY,

UNIT_PRICE

ORDER_NUMBER,

CUSTOMER_NAME

SIZE_INDEX,

ORDERED_QTY,

UNIT_PRICE

1

N

NM

Figure 10 Input relational database in Extended Entity Relationship model

There are six tables. Each table has its primary key in italic, and foreign key prefixed with

“*”. Their data dependencies (DD) are such that each foreign key determines its referred

primary key in FD, and subclass foreign key is a subset of its superclass primary key in ID as

follows:

FD1: PL_Line_information. PL_INFORMATION_SEQNO

PL_information.PL_INFORMATION_SEQNO

FD1 represent PL_INFORMAION and PL_Line_information are in one-to-many cardinality.

ID1: Bulk_Order. BulkOrder.ORDER_NUMBER Order_information .

Order_NUMBER

ID1 represent subclass BulkOrder and superclass ORDER_INFORMATION are in ISA

relationship.

ID2: TailorMadeOrder.TailorMadeOrder.ORDER_NUMBER Order_information .

Order_NUMBER

77

ID2 represent subclass TailorMadeOrder and superclass ORDER_INFORMATION ae in ISA

relationship.

MVD1: PL_Line_information. PL_INFORMATION_SEQNO Order_information .

Order_NUMBER

MVD2: Order_information . Order_NUMBER PL_Line_information.

PL_INFORMATION_SEQNO

Therefore: MVD1 and MVD2 represent that PL_Line_information and

ORDER_INFORMATION are in many-to-many cardinality. (Note: 2 one-to-many

cardinalities are equivalent to many-to-many cardinality)

Example: The layout of the input relational database can be shown in Figure 11.

Figure 11 Source Relational database in case study

We map input relational schema into a flattened XML OUDG schema with relational

structure in two levels tree only as shown in Figure 13. Notice that the second level sibling

elements (under root elements) are linked together using idref referring to id, which is similar

to foreign key referring to primary key in relational database.

78

FD: PL_LINE_INFORMATION PL_INFORMATION

FD: PL_LINE_DETAIL PL_LINE_INFORMATION, ORDER_INFORMATION

ID: (Bulk_Order) | (TailorMadeOrder) ORDER_INFORMATION

Order

(Root Element)

PL_INFORMATION PL_LINE_INFORMATION PL_LINE_DETAIL ORDER_INFORMATION BulkOrder TailorMadeOrder

Pl_information_Seqno
Pl_information_Seqno

Pl_line_information_Seqno Order_number

idref1
idref2 idref3

idref3 idref3id1
id2

id3

Order_number Order_number

t-order_information.c-ORDER_NUMBER(id3)t-pl_line_information.c-PL_INFORMATION_SEQNO.c-PL_LINE_INFORMATION_SEQNO (id2)

t-pl_information.c-PL_INFORMATION_SEQNO(id1)

Figure 12 Transformed flattened XML document conceptual schema in DTD Graph

There are seven elements. The second level elements has id(s) and/or idref(s). Their data

dependencies are such that each idref determines its referred id FD as follows:

FD1: t-pl_line_information. t-pl_information.1 t-pl_information. t-pl_information.1

FD1 represent PL_INFORMAION and PL_Line_information are in one-to-many cardinality.

FD1 in flattened XML is same as FD1 in RDB source. Therefore, one-to-many cardinality

between PL_INFORMAION and PL_Line_information is preserved.

ID1: t-bulk_order. t-order_information.1 t-order_information. t-order_information.1

ID1 represent BulkOrder and ORDER_INFORMATION are in ISA relationship. ID1 in

flattened XML is same as ID1 in RDB source. Therefore, ISA relationship between

BulkOrder and ORDER_INFORMATION is preserved.

ID2: t-tailor_made_order. t-pl_information.2 t-order_information. t-pl_information.2

ID2 represent TailorMadeOrder and ORDER_INFORMATION are in ISA relationship. ID2

in flattened XML is same as ID2 in RDB source. Therefore, ISA relationship between

TailorMadeOrder and ORDER_INFORMATION is preserved.

MVD1: id2id3

MVD2: id3id2

Therefore: MVD1 and MVD2 represent PL_Line_information and ORDER_INFORMATION

are in many-to-many cardinality. MVD1 and MVD2 in flattened XML is same as MVD1 and

MVD2 in RDB source. Therefore, many-to-many cardinality between TailorMadeOrder and

ORDER_INFORMATION is preserved.

79

The flattened XML document is shown in Figure 13.

Figure 13 Transformed flattened XML document

Step 2: Transform from flattened XML document into legacy databases

We can then map the open universal database schema into legacy databases as follows:

(a) Data transformation from flattened XML document into XML document

We can map the open universal database schema into XML database schema as shown in

Figure 14 which shows that elements Pl_information and Pl_line_information are in element

and sub-element 1:n association. Elements Pl_line_information, Pl_line_detail and

Order_information are in m:n association linked by pairs of idref referring to id. Elements

Order_information and Bulk_Order are in ISA relationship. Elements Order_information and

TailorMadeOrder are also in in ISA relationship. This XML structure has multiple levels of

elements which is different from the 2 levels elements in flattened XML document.

80

Example 2: Transform from flattened XML document into legacy databases

FD: PL_LINE_INFORMATION PL_INFORMATION

FD: PL_LINE_DETAIL PL_LINE_INFORMATION, ORDER_INFORMATION

ID: (ORDER_INFORMATION, Bulk_Order) | (ORDER_INFORMATION, TailorMadeOrder) ORDER_INFORMATION

Order

(Root Element)

PL_INFORMATION

PL_LINE_INFORMATION

PL_LINE_DETAIL

ORDER_INFORMATION

BulkOrder TailorMadeOrder

Pl_information_seqno

Pl_line_information_seqno

Order_seqno

TechnicalOrderNo CustomerOrderNo

idref

id

Figure 14 Translated XML document schema in DTD Graph

For example, figure 14 shows the mapping from flattened XML schema into object-oriented

database schema in UML. The class PL_Information and class Pl_line_information are in 1:n

association. Classes Pl_line_information and Order_information are in m:n association with

class Pl_line_detail as association class in between sub classes BulkOrder and

TailorMadeOrder which are in disjoint generalization under their superclass

Order_information such that the two subclasses data are mutually exclusive.

There are seven elements. The sub-element key determines its element key in FD. The idref

can determine its referred id in FD. The subclass element key is a subset of its superclass key

in ID as follows:

FD1: pl_line_information. pl_information.seqno pl_information. pl_information seqno

FD1 represent PL_INFORMAION and PL_Line_information are in one-to-many cardinality.

FD1 in XML is same as FD1 in flattened XML schema. Therefore, one-to-many cardinality

between PL_INFORMAION and PL_Line_information is preserved.

ID1: bulk_order. order_number order_information. order_number

81

ID1 represent BulkOrder and ORDER_INFORMATION are in ISA relationship. ID1 in XML

is same as ID1 in flattened XML schema. Therefore, ISA relationship between BulkOrder and

ORDER_INFORMATION is preserved.

ID2: tailor_made_order. order_number order_information. order_number

ID2 represent TailorMadeOrder and ORDER_INFORMATION are in ISA relationship. ID2

in flattened XML is same as ID2 in flattened XML schema. Therefore, ISA relationship

between TailorMadeOrder and ORDER_INFORMATION is preserved.

MVD1: PL_Line_information. PL_INFORMATION_SEQNO Order_information .

Order_NUMBER

MVD2: Order_information . Order_NUMBER PL_Line_information.

PL_INFORMATION_SEQNO

MVD1 and MVD2 represent PL_Line_information and ORDER_INFORMATION are in

many-to-many cardinality. MVD1 and MVD2 in XML is same as MVD1 and MVD2 in

flattened XML schema. Therefore, many-to-many cardinality between TailorMadeOrder and

ORDER_INFORMATION is preserved.

82

The transformed XML database document is:

 Figure 15 Transformed XML document

83

(b) Transform flattened XML documents into Object-Oriented databases

Example 3: Transform flattened XML documents into Object-Oriented databases

FD: PL_LINE_INFORMATION PL_INFORMATION

FD: PL_LINE_DETAIL PL_LINE_INFORMATION, ORDER_INFORMATION

ID: (Bulk_Order) | (TailorMadeOrder) ORDER_NUMBER

PL_INFORMATION

PL_LINE_INFORMATION

PL_LINE_DETAIL

ORDER_INFORMATION

BulkOrder TailorMadeOrder

Pl_information_seqno

Pl_line_information_seqno

Order_number

1..1

1:m
1:m 1:m

Order_number Order_number

Figure 16 Translated legacy object-oriented database schema in UML

In figure 16, record Pl_informations and Order_information are under object-oriented DBMS

as first records for database navigation access path. The path can go from class

Pl_information to class Pl_line_information in 1:n relationship. Classes Pl_line_information,

Order_information and Pl_line_detail are in m:n relationship. Classes Order_information and

BulkOrder are in ISA relationship. Similarly, records Order_information and

TailorMadeOrder are in ISA relationship.

There are six classes. Each class has its OID, and Stored OID. Their data dependencies are

such that each Stored OID key determines its referred OID in FD, and each subclass OID is a

subset of its superclass OID in ID as follows:

FD1: pl_line_information. Stored_OID pl_information. OID

FD1 represent PL_INFORMAION and PL_Line_information are in one-to-many cardinality.

FD1 in OODB is same as FD1 in object-oriented schema source. Therefore, one-to-many

cardinality between PL_INFORMAION and PL_Line_information is preserved.

ID1: bulk_order. OID order_information. OID

ID1 represent BulkOrder and ORDER_INFORMATION are in ISA relationship. ID1 in

OODB is same as ID1 in object-oriented schema source. Therefore, ISA relationship between

BulkOrder and ORDER_INFORMATION is preserved.

ID2: tailor_made_order. OID order_information. OID

84

ID2 represent TailorMadeOrder and ORDER_INFORMATION are in ISA relationship. ID2

in OODB is same as ID2 in object-oriented schema source .Therefore, ISA relationship

between TailorMadeOrder and ORDER_INFORMATION is preserved.

MVD1: PL_Line_information. PL_INFORMATION_SEQNO Order_information .

Order_NUMBER

MVD2: Order_information . Order_NUMBER PL_Line_information.

PL_INFORMATION_SEQNO

MVD1 and MVD2 represent PL_Line_information and ORDER_INFORMATION are in

many-to-many cardinality. Therefore, MVD1 and MVD2 in OODB is same as MVD1 and

MVD2 in flattened XML schema source, many-to-many cardinality between subclass

TailorMadeOrder and superclass ORDER_INFORMATION is preserved.

(Note: 2 one-to-many cardinalities are equivalent to many-to-many cardinality)

85

The transformed Object-Oriented Database Base is:

 Figure 17 Transformed object-oriented database

86

(c) Transform from flattened XML OUDG into Network database

Example 4: Transform from flattened XML OUDG into Network database

FD: PL_LINE_INFORMATION PL_INFORMATION

FD: PL_LINE_DETAIL PL_LINE_INFORMATION, ORDER_INFORMATION

ID: (ORDER_INFORMATION, Bulk_Order) | (ORDER_INFORMATION, TailorMadeOrder) ORDER_INFORMATION

PL_INFORMATION

PL_LINE_INFORMATION

PL_LINE_DETAIL

ORDER_INFORMATION

BulkOrder TailorMadeOrder

Pl_information_seqno

Pl_line_information_seqno

Order_seqno

TechnicalOrderNo
CustomerOrderNo

Network DBMS

set set

set

set

set

set set

Set

pl_information
Set

order_information

Set

pl_line_information

Set

pl_line_detail1 Set

pl_line_detail2

Set

TailorMadeOrderSet

BulkOrder

Figure 18 Translated legacy network database schema in Network Graph

In figure 18, record Pl_informations and Order_information are under network DBMS as first

records for database navigation access path. The path can go from record Pl_information to

record Pl_line_information in owner and member record in 1:n relationship. Records

Pl_line_information (owner), Order_information(owner) and Pl_line_detail (member) are in

flex structure such that records Pl_line_information and Order_information they are in m:n

relationship. Records Order_information and BulkOrder are in 1:1 relationship. Similarly,

records Order_information and TailorMadeOrder are in 1:1 relationship. The set records are

pointers only.

There are six records. Each record class has key. The member record key determines its

owner record key in FD, and subclass record key is a subset of its superclass record key as

follows:

FD1: pl_line_informtion. PL_INFORMATION_SEQNO pl_information.

PL_INFORMATION_SEQNO

FD1 represent PL_INFORMAION and PL_Line_information are in one-to-many cardinality.

FD1 in NDB is same as FD1 in flattened XML schema source. Therefore, one-to-many

cardinality between PL_INFORMAION and PL_Line_information is preserved.

ID1: BulkOrder.ORDER_NUMBER order_information. ORDER_NUMBER

87

ID1 represent BulkOrder and ORDER_INFORMATION are in ISA relationship. ID1 in NDB

is same as ID1 in flattened XML schema source. Therefore, ISA relationship between

BulkOrder and ORDER_INFORMATION is preserved.

ID2: TailorMadeOrder.ORDER_NUMBER order_information. ORDER_NUMBER

ID2 represent TailorMadeOrder and ORDER_INFORMATION are in ISA relationship. ID2

in NDB is same as ID2 in flattened XML schema source. Therefore, ISA relationship between

TailorMadeOrder and ORDER_INFORMATION is preserved.

MVD1: PL_Line_information. PL_INFORMATION_SEQNO Order_information .

Order_NUMBER

MVD2: Order_information . Order_NUMBER PL_Line_information.

PL_INFORMATION_SEQNO

Therefore: MVD1 and MVD2 represent PL_Line_information and ORDER_INFORMATION

are in many-to-many cardinality. Therefore, MVD1 and MVD2 in NDB is same as MVD1 and

MVD2 in flattened XML schema source, many-to-many cardinality between

TailorMadeOrder and ORDER_INFORMATION is preserved.

(Note: 2 one-to-many cardinalities are equivalent to many-to-many cardinality)

88

The transformed network database records are:

 Figure 19 Transformed Network database

89

(d) Transform from flattened XML documents to relational database

Example 5: Transform from flattened XML documents to relational database

The transformed relational conceptual schema in Extended Entity Relationship model

Bulk_Order
TailorMade

Order

O

PL_INFORMATION

PL_LINE_INFORMATION ORDER_INFORMATION

include

PL_LINE_DETAIL

FD: PL_LINE_INFORMATION PL_INFORMATION

FD: PL_LINE_DETAIL PL_LINE_INFORMATION, ORDER_INFORMATION

ID: (Bulk_Order | TailorMadeOrder) ORDER_INFORMATION

PL_INFORMATION_SEQNO,

ISSUE_DATE,

DATE_LAST_MODIFIED,

LAST_MODIFIED_BY,

PL_STATUS,

PL_HEADER_REMARKS,

SHIPMENT_DATE,

EXPECTED_ARRIVAL_DATE

PL_INFORMATION_SEQNO,

PL_LINE_INFORMATION_SEQN

O, PACKAGE_TYPE,

LENGTH_UNIT_OF_MEASURE,

HEIGHT_UNIT_OF_MEASURE,

WEIGHT_UNIT_OF_MEASSAGE

ORDER_NUMBER,

BRAND,

DIVISON,

CUSTOMER_ORDER_NUMBER,

CUSTOMER_NUMBER,

ORDER_TYPE, MODEL_NUMBER,

MODEL_DESCRIPTION,

ORDER_DATE, ORDERED_QTY,

RICE+PRE_UNIT, DISCOUNT

ITEM_NUMBER,

TOTAL_PACKED_QTY,

TOTAL_GROSS_WEIGHT,

TOTAL_VOLUME,

TOTAL_VOLUME_LENGTH,

TOTAL_VOLUME_WIDTH,

TOTAL_VOLUME_HEIGHT

ORDER_NUMBER,

CUSTOMER_NAME

SIZE_INDEX,

ORDERED_QTY,

UNIT_PRICE

ORDER_NUMBER,

CUSTOMER_NAME

SIZE_INDEX,

ORDERED_QTY,

UNIT_PRICE

1

N

NM

Figure 20 Transformed relational database in Extended Entity Relationship model

There are six tables. Each table has its primary key in italic, and foreign key prefixed with

“*”. Their data dependencies (DD) are such that each foreign key determines its referred

primary key in FD, and subclass foreign key is a subset of its superclass primary key in ID as

follows:

FD1: PL_Line_information. PL_INFORMATION_SEQNO

PL_information.PL_INFORMATION_SEQNO

FD1 represent PL_INFORMAION and PL_Line_information are in one-to-many cardinality.

FD1 in RDB is same as FD1 in flattened XML schema source. Therefore, one-to-many

cardinality between PL_INFORMAION and PL_Line_information is preserved.

ID1: Bulk_Order. BulkOrder.ORDER_NUMBER Order_information .

Order_NUMBER

90

ID1 represent subclass BulkOrder and superclass ORDER_INFORMATION are in ISA

relationship. ID1 in RDB is same as ID1 in flattened XML schema source. Therefore, ISA

relationship between BulkOrder and ORDER_INFORMATION is preserved.

ID2: TailorMadeOrder.TailorMadeOrder.ORDER_NUMBER Order_information .

Order_NUMBER

ID2 represent subclass TailorMadeOrder and superclass ORDER_INFORMATION ae in ISA

relationship. ID2 in RDB is same as ID2 in flattened XML schema source. Therefore, ISA

relationship between TailorMadeOrder and ORDER_INFORMATION is preserved.

MVD1: PL_Line_information. PL_INFORMATION_SEQNO Order_information .

Order_NUMBER

MVD2: Order_information.Order_NUMBER PL_Line_information.

PL_INFORMATION_SEQNO

Therefore: MVD1 and MVD2 represent PL_Line_information and ORDER_INFORMATION

are in many-to-many cardinality. Therefore, MVD1 and MVD2 in RDB is same as MVD1 and

MVD2 in flattened XML schema source, many-to-many cardinality between

TailorMadeOrder and ORDER_INFORMATION is preserved.

(Note: 2 one-to-many cardinalities are equivalent to many-to-many cardinality)

91

 Figure 21 Transformed relational database

Performance Analysis

1) Performance system platform

To access the relative performance of the database legacy, we performed the OODB

experiment in a VM installed on an IBM server (xSeries 335 / 8676) with Intel(R) Xeon(R)

CPU X5650 with clock rate of 2.67 GHz, 2GB of main memory. The other experiments are

performed on an IBM blade server with Intel(R) Xeon(R) CPU X5660 with clock rate of 2.80

GHz, 2GB of main memory. The operating system and DMBS using for the experiment are

recorded in the table 4. The UDB software is written in Java 2.

2) DBMS for database

Table 4 DBMS table

 RDB

source

Flattened

XML RDB XML OODB NDB

92

Server OS Window 7 Window 7 Window 7 Window 7 Window2000 Window 7

DBMS MySQL eXist Oracle eXist UniSQL Raima

3) Result in Diagram

First, we bulk load 400 record of Relational database source of the prototype OUDG. Then

we measure the time for these 4 output database legacy for this bulk load in table 5.

Second, we query the data from one table from each database legacy. We measure the time

and recorded in table 6.

Table 5 Bulk load

Dataset RDB source Flattened XML RDB(Oracle) XML OODB NDB

x400 27 sec 0.51 sec 2 sec 0.51 sec 0.5 sec 0.53 sec

x4000 180 sec 3 sec 3 sec 3 sec 5 sec 7 sec

Table 6 Selection (Based on a condition, eg, Select bulk_order table)

Dataset RDB source Flattened XML RDB(Oracle) XML OODB NDB

x400 4 sec 0.006 sec 1 sec 0.006 sec 0.5 sec 0.14 sec

x4000 30 sec 0.007 sec 0.7 sec 0.014 sec 5 sec 1 sec

Figure 21 Performance analysis among legacy databases

93

Figure 21 compared the bulk load and selection performance analysis in 4 transformed legacy

databases. The X axis represents the record time(second) while the Y axis represents 4

transformed legacy databases from OUDB. From the figure above, RDB is poorest in

performance in both bulk load and selection while XML is the best for selection.

Result

In bulk load, the performance of OODB, NDB, XML are better than RDB, in the sequence of

selection performance is XML > NDB > OODB> RDB. It is because XML are in Dom Tree

structure which is the best for selection. RDB requires values matching, therefore its

performance is poorest. NDB is pointer structure. Therefore it is better than OODB which

requires table format and pointer structure.

As a result, we showed that it is valuable for user to transform the Relational database to

other legacy databases by OUDG if the user wants to have a higher performance of their

databases.

94

Chapter 6 Conclusion

Since relational database is the most user friendly legacy database, and XML database is the

most portable database for information highway on the Internet. In this thesis, we offer

Flattened XML database as a universal database such that it can be a user friendly database

middleware for all legacy databases.

The contributions of this thesis are:

(1) The data models of legacy databases are compatible with each other for the preservation

of their data semantic such as cardinality, ISA and generalization.

(2) The legacy databases can be reengineered into each other through flattened XML

document such that a source legacy database can be transformed into a flattened XML

document which can be further transformed into another target legacy database.

(3) The performance of OUDG (Open Universal Database Gateway) is acceptable through a

prototype performance analysis.

(4) Use cloud computing: All of the legacy databases and the OUDB are developed in cloud

platform.

The application of this thesis are:

(1) Openness of a universal database: The reason we choose flattened XML document is its

openness, and DBMS independence. All other data models are DBMS dependent.

Nevertheless, users can use OUDG to access any legacy database via flattened XML

documents on the Internet through Internet Explorer without programming. Furthermore, an

Oracle user can access an MS SQL Server database after transforming the Oracle database

into flattened XML document, and then to MS SQL Server database by OUDG.

(2) Recovery of legacy database: Since flattened XML document is an information

equivalent legacy database such that it can be used to recover any legacy database whenever

the production legacy database is down. As a result, an equivalent XML document can be

parallel processing with legacy database in non-stop computing as their backup copy.

(3) Heterogeneous databases integration for data warehousing: By transforming all

in-house legacy databases into a common legacy database, companies can use OUDG to

transform its heterogeneous databases into homogeneous databases, and integrate them into a

logical view for data warehousing application.

95

(4) Portability of Flattened XML document as Universal database: The OUDG solution

is not limited to using a particular DBMS, but also allows users to access any legacy database

through OUDG, which is similar to ODBC.

In summary, the OUDG unites all legacy database data models into one data model of

flattened XML schema. The portability of the proposed flattened XML document can be

transferred into any open platform. The methodology of this OUDG is to download the raw

data of source legacy database into flattened XML document according to source legacy

database schema, and upload it into target database using translated target legacy database

schema, which is a logical level approach to avoid physical data type conversion. Therefore,

the methodology can transform any legacy database into any other legacy database. The

reason of using flattened XML document as medium is to reduce the number of data

conversion programs. Without OUDB, we need 4 * 4 = 16 programs. With OUDG, we need

4 + 4 = 8 programs for data conversion.

Above all, all legacy databases can be transformed into each other via flattened XML

documents for data access in the same way as computers connect to each other via Internet

for information retrieval.

Appendix shows the schema of prototype.

96

List of Publication

1. Joseph Fong, Kenneth Ting Yan Wong, and Tracy Wu, PTA System: Mobile Computing

Student Assessment by Parent and Teacher Association: LNCS of Hybrid Learning, 5th

International Conference, ICHL 2012

2. Joseph Fong, Kenneth Ting Yan Wong, Fu Lee Wang, Cheng Wing Tung and Titus Lo,

Environmental Friendly Real Time Quiz Using Mobile Devices with Auto Marking:

Selected Paper of Hybrid Learning, 5th International Conference, ICHL 2012

3. Joseph Fong, Kenneth Ting Yan Wong, Generating E-book System Using Cloud

Computing: A Cognitive Map and Open Forum Approach: LNCS of Hybrid Learning, 5th

International Conference, ICHL 2013

4. Joseph Fong, Kenneth Ting Yan Wong, A personal assistant authoring eBook for

eLearning in Higher Education using Inverted Files of Hyperlinks, International Journal

of Innovation and Learning 2013

5. Joseph Fong, Kenneth Ting Yan Wong, Brian Lam, Herbert Shiu, a pending patent on

“Cross model datum access with semantic preservation for legacy databases”, 2014

Working Paper

There is a working paper on universal database, which has been accepted for publication by,

Sixth International conference on Database Management Systems (DMS-2015).

The paper will be titled, cross model datum access with semantic preservation for legacy

databases.

97

Reference

Chen, P. (1976), "The Entity-Relationship Model: Toward a Unified View of Data", ACM on

Database Systems, Vol. 1, No. 1.

CODD, E. F. (1970), A Relational Model of Data for Large Shared Data Banks

Communications of the ACM, Volume 13 Issue 6, Pages 377-387

eXist (2014) , XML DBMS. http://exist-db.org/exist/apps/homepage/index.html

Fong, J. (1991), "The Framework of Data and Transaction Translation in the Distributed

Heterogeneous Database Management System: An Extended Entity Relationship Approach",

Proceedings of the 10th South East Asia Regional Computer Confederation Conference, Bali,

Indonesia, 4-6 December 1991, Section 47, pp. 1-26.

Fong, J. (1992), "Methodology for Schema Translation from Hierarchical or Network

into Relational", Information and Software Technology, Volume 34, Number 3, pp. 159- 174.

Fong, J and Bloor,C. (1994), "Data Conversion Rules from Network to Relational

Databases", Information and Software Technology, Volume. 36 No. 3, pp. 141-154.

Fong, J. (1996), "Adding Relational Interface to Non-relational Database", IEEE

Software, pp. 89-97.

Fong, J (1997), “Converting Relational to Object-Oriented Databases”, SIGMOD RECORD,

Volume 26, Number 1, pp53-58.

Fong, J. and Huang, S.M. (1999), “Architecture of a Universal Database: A Frame Model

Approach”, International Journal of Cooperative Information Systems, Volume 8, Number. 1,

pp. 47-82.

Fong, J. (2001), "Converting Relational Database into XML Documents with DOM”,

Proceeding DEXA '01 Proceedings of the 12th International Workshop on Database and

Expert Systems Applications, Page 61, IEEE Computer Society Washington, DC, USA.

Fong, J., Li, Q. and Huang, S.M. (2003a), “Universal Data Warehousing Based on a

Meta-Data Modeling Approach”, International Journal of Cooperative Information Systems,

http://exist-db.org/exist/apps/homepage/index.html

98

Volume 12, Number 3, pp.325-363.

Fong, J., Pang, R., Fong, A., Pang, F., and Poon, K. (2003), “Concurrent data materialization

for object-relational database with semantic metadata”, International Journal of Software

Engineering and Knowledge Engineering, Volume 13, Number 3, pp.257-291.

Fong, J. (2004), "XTOPO: An XML-based topology for information highway on the

Internet”, Journal of Database management, Volume 15, Issue 3.

Fong, J. and San Kuen Cheung (2005),”Translating relational schema into XML schema

definition with data semantic preservation and XSD graph”, Information and Software

Technology, Volume 47, pp.437-462

Fong, J. (2006), “Information Systems Reengineering and Integration”, Springer Verlag,

ISBN 1-84628-382-5, 370 pages.

Fong, J., Shiu, H., Wong, J. (2009), “Methodology for data conversion from XML documents

to relations using Extensible Stylesheet Language Transformation”, International Journal

of Software Engineering and Knowledge Engineering, Volume 19, Number 2, pp. 249-281

Fong, J and Shiu, H. (2012), “An interpreter approach for exporting relational data into XML

documents with Structured Export Markup Language’ Journal of Database Management,

volume 23, issue 1.

Funderburk, J. E. et al. (2002), “XTABLES: Bridging Relational Technology and XML”,

IBM Systems Journal, Vol 41, No. 4, PP 616 –641.

Guardalben, G. (2004). Integrating XML and Relational Database Technologies: A Position

Paper. Retrieved May 1st,2005, from

http://www.hitsw.com/products_services/whitepapers/integrating_xml_rdb/integrating_x

ml_white_paper.pdf

Gilmore, W.J. (2000), Introduction to Database Normalization (MySQL database)

http://www.devshed.com/c/a/mysql/an-introduction-to-database-normalization/

http://www.devshed.com/c/a/mysql/an-introduction-to-database-normalization/

99

Harris, D. (2012), “cloud-databases-101-who-builds-em-and-what-they-do”,

GIGAOM,

http://gigaom.com/2012/07/20/cloud-databases-101-who-builds-em-and-what-they-do/

Hsiao, D.K. and Kamel, M.N.(1989), “Heterogeneous Databases: Proliferations, Issues, and

Solutions”, IEEE Transactions on Knowledge and Data Engineering, Voumn 1, Np. 1.

Pp.45-62.

Janssen, C., Entity-Relationship Diagram (2014),

http://www.techopedia.com/definition/1200/entity-relationship-diagram-erd

Kanagaraj, S. and Sunitha, A. (2012),”Converting Relational Database Into Xml Document”,

International Journal of Computer Science Issues, Vol.9, Issue 2, No 1

Lee, D., Mani, M and Chu, W. W. (2002), “Effective Schema Conversions between XML and

Relational Models” In: Proceedings of the European Conference on Artificial Intelligence and

the Knowledge Transformation Workshop, Lyon, France

Lee, D., Mani, M and Chu, W. W. (2012), “Schema Conversion Methods between XML and

Relational Models”, International Journal of Computer Science Issues, Vol. 9, Issue 2, No 1,

March 2012

Lum, V.Y., Shu, N.C. and Housel, B.C. (1976), “A General Methodology for Data

Conversion and Restructuring”, IBM Journal of research and development, Volume 20, Issue

5, pp.483-497.

Navathe, S. and Awong, A. (1998), Abstracting relational and hierarchical data with a

semantic data model, Entity-Relationship Approach, p305-333.

Object-Oriented database users (2014)

http://www.objectivity.com/

http://www.gemstone.com/

ODBC(2014), http://en.wikipedia.org/wiki/Open_Database_Connectivity

Oracle (2014), Relational database software.

http://www.oracle.com/us/products/database/overview/index.html

http://gigaom.com/2012/07/20/cloud-databases-101-who-builds-em-and-what-they-do/
http://www.techopedia.com/definition/1200/entity-relationship-diagram-erd
http://www.oracle.com/us/products/database/overview/index.html

100

Raima (2014), Network model database software. http://raima.com/

Raima users(2014), http://raima.com/customers/

Ramez,E., Shamkant, B.(2011), "Database Systems, Models, Languages, Design , and

Application programming", Pearson, 6th edition, P.56

Relational database users (2014), https://www.oracle.com/search/customers/

Rhoton, J. and Haukioja. R., (2013), Cloud Computing Architected,

ISBN 978-0-9563556-1-4, Recursive Press, P163 - P183, 360 pages

Sellis, T., Lin, C.C. and Raschid, L. (1993), “Coupling Production Systems and

Database Systems: A Homogeneous Approach”, IEEE TRANSACTIONS ON

KNOWLEDGE AND DATA ENGINEERING, VOL. 5, NO. 2.

Shoshani, A.(1975), “A Logical-Level Approach to Data Base Conversion”, ACM SGMOD

International Conference on Management of Data, pp.112-122.

Silverston, L. and Graziano, K. (2008)

www.360doc.com/content/08/0830/01/1032_1590731.shtml

XML as web service (2014), http://www.altova.com/downloadxmltools.html

XML export and import (2014),

http://wiki.servicenow.com/index.php?title=Exporting_and_Importing_XML_Files)

XML users (2014), https://tomcat.apache.org/tomcat-3.3-doc/serverxml.html

Wang, S.P., Ledley, R.S. (2013), Computer Architecture and Security Fundamentals of

Designing Secure Computer Systems ISBN: 978-1-118-16881-3, 321 Pages, P203-

208.

http://www.360doc.com/content/08/0830/01/1032_1590731.shtml

101

Appendix Schema of Prototype

The input Relational database schema is:

(primary keys are underlined, foreign keys are prefixed with “*”)

PL_ INFORMATION (PL_INFORMATION_SEQNO, ISSUE_DATE,

DATE_LAST_MODIFIED, LAST_MODIFIED_BY, PL_STATUS,

PL_HEADER_REMARKS, SHIPMENT_DATE, EXPECTED_ARRIVAL_DATE)

PL_LINE_INFORMATION (*PL_INFORMATION_SEQNO,

PL_LINE_INFORMATION_SEQNO, PACKAGE_TYPE,

LENGTH_UNIT_OF_MEASURE, HEIGHT_UNIT_OF_MEASURE,

WEIGHT_UNIT_OF_MEASSAGE)

PL_LINE_DETAIL (*PL_INFORMATION_SEQNO,

*PL_LINE_INFORMATION_SEQNO, *ORDER_NUMBER, ITEM_NUMBER,

TOTAL_PACKED_QTY, TOTAL_GROSS_WEIGHT, TOTAL_VOLUME,

TOTAL_VOLUME_LENGTH, TOTAL_VOLUME_WIDTH,

TOTAL_VOLUME_HEIGHT)

ORDER_INFORMATION (ORDER_NUMBER, BRAND, DIVISON,

CUSTOMER_ORDER_NUMBER, CUSTOMER_NUMBER, ORDER_TYPE,

MODEL_NUMBER, MODEL_DESCRIPTION, ORDER_DATE, ORDERED_QTY,

RICE+PRE_UNIT, DISCOUNT)

BULKORDER(*ORDER_NUMBER, CUSTOMER_NAME, SIZE_INDEX,

ORDERED_QTY, UNIT_PRICE)

TAILORMADEORDER(*ORDER_NUMBER, CUSTOMER_NAME, SIZE_INDEX,

ORDERED_QTY , UNIT_PRICE)

102

The flattened XML document schema is:

<!ELEMENT db-casestudy (PL_INFORMATION, PL_LINE_INFORMATION,

PL_LINE_DETAIL, ORDER_INFORMATION, BULKORDER, TAILORMADEORDER)>

<!ELEMENT PL_INFORMATION EMPTY>

<!ATTLIST PL_INFORMATION

 t-pl_information.c-PL_INFORMATION_SEQNO ID #REQUIRED

 PL_INFORMATION_SEQNO CDATA #REQUIRED

 ISSUE_DATE CDATA #REQUIRED

DATE_LAST_MODIFIED CDATA #REQUIRED

LAST_MODIFIED_BY CDATA #REQUIRED

PL_STATUS CDATA #REQUIRED

PL_HEADER_REMARKS CDATA #REQUIRED

SHIPMENT_DATE CDATA #REQUIRED

EXPECTED_ARRIVAL_DATE CDATA #REQUIRED>

<!ELEMENT PL_LINE_INFORMATION EMPTY>

<!ATTLIST PL_LINE_INFORMATION

 t-pl_information.c-PL_INFORMATION_SEQNO IDREF IMPLIED

t-pl_line_information.c-PL_INFORMATION_SEQNO.c-PL_LINE_INFORMATION

_SEQNO ID #REQUIRED

 PL_INFORMATION_SEQNO CDATA #REQUIRED

PL_LINE_INFORMATION_SEQNO CDATA #REQUIRED

PACKAGE_TYPE CDATA #REQUIRED

LENGTH_UNIT_OF_MEASURE CDATA #REQUIRED

WIDTH_UNIT_OF_MEASURE CDATA #REQUIRED

HEIGHT_UNIT_OF_MEASURE CDATA #REQUIRED

WEIGHT_UNIT_OF_MEASURE CDATA #REQUIRED>

<!ELEMENT PL_LINE_DETAIL EMPTY>

<!ATTLIST PL_LINE_DETAIL

t-pl_line_information.c-PL_INFORMATION_SEQNO.c-PL_LINE_INFORMATION

_SEQNO IDREF IMPLIED

 t-order_information.c-ORDER_NUMBER IDREF IMPLIED

 PL_INFORMATION_SEQNO CDATA #REQUIRED

PL_LINE_INFORMATION_SEQNO CDATA #REQUIRED

ORDER_NUMBER CDATA #REQUIRED

ITEM_NUMBER CDATA #REQUIRED

TOTAL_GROSS_WEIGHT CDATA #REQUIRED

TOTAL_VOLUME_WIDTH CDATA #REQUIRED

TOTAL_VOLUME_HEIGHT CDATA #REQUIRED>

103

<!ELEMENT ORDER_INFORMATION EMPTY>

<!ATTLIST ORDER_INFORMATION

t-order_information.c-ORDER_NUMBER ID #REQUIRED

 ORDER_NUMBER CDATA #REQUIRED

BRAND CDATA #REQUIRED

DIVISION CDATA #REQUIRED

ORDER_TYPE CDATA #REQUIRED

MODEL_NUMBER CDATA #REQUIRED

MODEL_DESCRIPTION CDATA #REQUIRED

 ORDER_DATE CDATA #REQUIRED

ORDERED_QTY CDATA #REQUIRED

PRICE_PRE_UNIT CDATA #REQUIRED

DISCOUNT CDATA #REQUIRED>

<!ELEMENT BULKORDER EMPTY>

<!ATTLIST BULKORDER

t-order_information.c-ORDER_NUMBER IDREF IMPLIED

 ORDER_INFORMATION_ID CDATA #REQUIRED

 CUSTOMER_NAME CDATA #REQUIRED

SIZE_INDEX CDATA #REQUIRED

ORDERED_QTY CDATA #REQUIRED

UNIT_PRICE CDATA #REQUIRED>

<!ELEMENT TAILORMADEORDER EMPTY>

<!ATTLIST TAILORMADEORDER

t-order_information.c-ORDER_NUMBER IDREF IMPLIED

 CUSTOMER_NAME CDATA #REQUIRED

SIZE_INDEX CDATA #REQUIRED

ORDERED_QTY CDATA #REQUIRED

UNIT_PRICE CDATA #REQUIRED>

</ORDER>

104

The target XML database schema is:

<!ELEMENT db-casestudy (PL_INFORMATION, ORDER_INFORMATION)>

<!ELEMENT PL_INFORMATION (PL_LINE_INFORMATION*)>

<!ATTLIST PL_INFORMATION

 PL_INFORMATION_SEQNO CDATA #REQUIRED

 ISSUE_DATE CDATA #REQUIRED

DATE_LAST_MODIFIED CDATA #REQUIRED

LAST_MODIFIED_BY CDATA #REQUIRED

PL_STATUS CDATA #REQUIRED

PL_HEADER_REMARKS CDATA #REQUIRED

SHIPMENT_DATE CDATA #REQUIRED

EXPECTED_ARRIVAL_DATE CDATA #REQUIRED>

<!ELEMENT PL_LINE_INFORMATION (PL_LINE_DETAIL)>

<!ATTLIST PL_LINE_INFORMATION

 PL_INFORMATION_SEQNO CDATA #REQUIRED

PL_LINE_INFORMATION_SEQNO CDATA #REQUIRED

PACKAGE_TYPE CDATA #REQUIRED

LENGTH_UNIT_OF_MEASURE CDATA #REQUIRED

WIDTH_UNIT_OF_MEASURE CDATA #REQUIRED

HEIGHT_UNIT_OF_MEASURE CDATA #REQUIRED

WEIGHT_UNIT_OF_MEASURE CDATA #REQUIRED>

<!ELEMENT PL_LINE_DETAIL EMPTY>

<!ATTLIST PL_LINE_DETAIL

idref1 IDREF IMPLIED

 PL_INFORMATION_SEQNO CDATA #REQUIRED

PL_LINE_INFORMATION_SEQNO CDATA #REQUIRED

ORDER_NUMBER CDATA #REQUIRED

ITEM_NUMBER CDATA #REQUIRED

TOTAL_GROSS_WEIGHT CDATA #REQUIRED

TOTAL_VOLUME_WIDTH CDATA #REQUIRED

TOTAL_VOLUME_HEIGHT CDATA #REQUIRED>

<!ELEMENT ORDER_INFORMATION (BULKORDER, TAILORMADEORDER)>

<!ATTLIST ORDER_INFORMATION

id1 ID #REQUIRED

 ORDER_NUMBER CDATA #REQUIRED

BRAND CDATA #REQUIRED

105

DIVISION CDATA #REQUIRED

ORDER_TYPE CDATA #REQUIRED

MODEL_NUMBER CDATA #REQUIRED

MODEL_DESCRIPTION CDATA #REQUIRED

 ORDER_DATE CDATA #REQUIRED

ORDERED_QTY CDATA #REQUIRED

PRICE_PRE_UNIT CDATA #REQUIRED

DISCOUNT CDATA #REQUIRED>

<!ELEMENT BULKORDER EMPTY>

<!ATTLIST BULKORDER

 CUSTOMER_NAME CDATA #REQUIRED

SIZE_INDEX CDATA #REQUIRED

ORDERED_QTY CDATA #REQUIRED

UNIT_PRICE CDATA #REQUIRED>

<!ELEMENT TAILORMADEORDER EMPTY>

<!ATTLIST TAILORMADEORDER

 CUSTOMER_NAME CDATA #REQUIRED

SIZE_INDEX CDATA #REQUIRED

ORDERED_QTY CDATA #REQUIRED

UNIT_PRICE CDATA #REQUIRED>

</ORDER>

106

The target Object-Oriented database schema is:

create class PL_INFORMATION;

CREATE class PL_LINE_DETAIL;

Create class ORDER_INFORMATION;

create class PL_LINE_INFORMATION

(PL_INFROAMATION_SEQNO varchar(20),

 PL_LINE_INFORMATOIN_SEQNO varchar(20),

 PACKAGE_TYPE varchar(20),

 LENGTH_UNIT_OF_MEASURE varchar(20),

 WIDTH_UNIT_OF_MEASURE varchar(20),

 HEIGHT_UNIT_OF_MEASURE varchar(20),

 WEIGHT_UNIT_OF_MESSAGE varchar(20),

 PL_LINE_ass2 set of (PL_LINE_DETAIL),

 PL_LINE_ass PL_INFORMATION);

alter class PL_INFORMATION

Add attribute PL_INFORMATION_SEQNO varchar(20),

 ISSUE_DATE varchar(20),

 DATA_LAST_MODIFIED varchar(20),

 LAST_MODIFIED_BY varchar(20),

 PL_STATUS varchar(2),

 PL_HEADER_REMARKS varchar(40),

 SHIPMENT_TYPE varchar(20),

 SHIPMENT_DATE varchar(20),

 EXPERCTED_ARRIVAL_DATE varchar(20),

 PL_as set of (PL_LINE_INFORMATION);

alter class PL_LINE_DETAIL

Add attribute ORDER_NUMBER integer,

 PL_INFORMATION_SEQNO varchar(20),

 PL_LINE_INFORMATION_SEQNO varchar(20),

 ORDER_NUMBER varchar(20),

 ITEM_NUMBER varchar(20),

 TOTAL_PACKED_QTY varchar(20),

 TOTAL_GROSS_WEIGHT varchar(20),

 TOTAL_VOLUME_LENGTH varchar(20),

 TOTAL_VOLUME_WIDTH varchar(20),

 TOTAL_VOLUMEN_HEIGHT varchar(20),

 LINE_DETAIL_ass PL_LINE_INFORMATION,

 LINE_DETAIL_ass2 ORDER_INFORMATION;

alter class ORDER_INFORMATION

Add attribute ORDER_NUMBER varchar(20),

 BRAND varchar(20),

 DIVISION varchar(20),

 CUSTOMER_ORDER_NUMBER varchar(20),

 CUSTOMER_NUMBER varchar(20),

 ORDER_TPYE varchar(20),

 MODEL_NUMBER varchar(20),

 MODEL_DESCRIPTION varchar(40),

 ORDER_DATE varchar(20),

 ORDERD_QTY varchar(20),

 PRICE_PRE_UNIT varchar(20),

 DISCOUNT varchar(20),

 ORDER_INFO_as set of (PL_LINE_DETAIL);

create class BulkOrder as subclass of ORDER_INFORMATION

(CUSTOMER_NAME varchar(20),

 SIZE_INDEX varchar(20),

 ORDERED_QTY varchar(20),

 UNIT_PRICE varchar(20),);

create class TailorMadeOrder as subclass of

ORDER_INFORMATION

(CUSTOMER_NAME varchar(20),

 SIZE_INDEX varchar(20),

 ORDERED_QTY varchar(20),

 UNIT_PRICE varchar(20));

107

The target Network database schema is:

database NDB1 {

 data file "NDB1.000" contains Network_DBMS;

 data file "NDB1.001" contains PL_INFORMATION;

 data file "NDB1.002" contains

PL_LINE_INFORMATION;

 data file "NDB1.003" contains PL_LINE_DETAIL;

 data file "NDB1.004" contains

ORDER_INFORMATION;

 data file "NDB1.005" contains BULKORDER;

 data file "NDB1.006" contains TAILORMADEORDER;

 key file "NDB1.k01" contains Pl_information_seqno;

 key file "NDB1.k02" contains A;

 key file "NDB1.k03" contains B;

 key file "NDB1.k04" contains C;

 key file "NDB1.k05" contains D;

 key file "NDB1.k06" contains E;

 record Network_DBMS { }

 record PL_INFORMATION {

char SHIPMENT_DATE[31];

char PL_STATUS[31];

char SHIPMENT_TYPE[31];

char ISSUE_DATE[31];

char DATE_LAST_MODIFIED[31];

char EXPECTED_ARRIVAL_DATE[31];

char LAST_MODIFIED_BY[31];

char PL_HEADER_REMARKS[31];

key char Pl_information_seqno[31];

 }

 record PL_LINE_INFORMATION {

char WIDTH_UNIT_OF_MEASURE[31];

char LENGTH_UNIT_OF_MEASURE[31];

char PACKAGE_TYPE[31];

char HEIGHT_UNIT_OF_MEASURE[31];

char PL_LINE_INFORMATOIN_SEQNO[31];

char WEIGHT_UNIT_OF_MESSAGE[31];

char PL_INFORMATOIN_SEQNO[31];

compound key A {

PL_INFORMATOIN_SEQNO;

PL_LINE_INFORMATOIN_SEQNO; }

}

 record PL_LINE_DETAIL {

char TOTAL_VOLUME_WIDTH[31];

char PL_LINE_INFORMATION_SEQNO[31];

char TOTAL_VOLUMEN_HEIGHT[31];

char TOTAL_PACKED_QTY[31];

char TOTAL_VOLUME_LENGTH[31];

char ITEM_NUMBER[31];

char ORDER_NUMBER[31];

char TOTAL_GROSS_WEIGHT[31];

char PL_INFORMATION_SEQNO[31];

compound key B {

PL_INFORMATION_SEQNO;

PL_LINE_INFORMATION_SEQNO;

ORDER_NUMBER; }

}

record ORDER_INFORMATION{

char PRICE_PRE_UNIT[31];

char DIVISION[31];

char ORDER_DATE[31];

char CUSTOMER_ORDER_NUMBER[31];

char ORDER_TPYE[31];

char MODEL_NUMBER[31];

char MODEL_DESCRIPTION[31];

char CUSTOMER_NUMBER[31];

char BRAND[31];

char DISCOUNT[31];

char ORDER_NUMBER[31];

char ORDERD_QTY[31];

compound key C {

108

ORDER_NUMBER; }

}

record BULKORDER{

char PRICE_PRE_UNIT[31];

char ORDER_DATE[31];

char CUSTOMER_NAME[31];

char UNIT_PRICE[31];

char CUSTOMER_ORDER_NUMBER[31];

char ORDER_TPYE[31];

char ORDER_NUMBER[31];

char SIZE_INDEX[31];

char ORDERED_QTY[31];

char DIVISION[31];

char MODEL_NUMBER[31];

char MODEL_DESCRIPTION[31];

char BRAND[31];

char CUSTOMER_NUMBER[31];

char DISCOUNT[31];

char ORDERD_QTY[31];

compound key D {

ORDER_NUMBER; }

}

record TAILORMADEORDER{

char PRICE_PRE_UNIT[31];

char ORDER_DATE[31];

char CUSTOMER_NAME[31];

char UNIT_PRICE[31];

char CUSTOMER_ORDER_NUMBER[31];

char ORDER_TPYE[31];

char ORDER_NUMBER[31];

char SIZE_INDEX[31];

char ORDERED_QTY[31];

char DIVISION[31];

char MODEL_NUMBER[31];

char MODEL_DESCRIPTION[31];

char BRAND[31];

char CUSTOMER_NUMBER[31];

char DISCOUNT[31];

char ORDERD_QTY[31];

compound key E {

ORDER_NUMBER; }

}

 set pl_information {

 order last;

 owner Network_DBMS;

 member PL_INFORMATION;

 }

 set pl_line_information {

 order last;

 owner PL_INFORMATION;

 member PL_LINE_INFORMATION;

 }

 set pl_line_detail1 {

 order last;

 owner PL_LINE_INFORMATION;

 member PL_LINE_DETAIL;

 }

 set order_information {

 order last;

 owner Network_DBMS;

 member ORDER_INFORMATION;

 }

 set pl_line_detail2 {

 order last;

 owner ORDER_INFORMATION;

 member PL_LINE_DETAIL;

 }

 set BulkOrder {

 order last;

 owner ORDER_INFORMATION;

 member BULKORDER;

 }

 set TailorMadeOrder {

 order last;

 owner ORDER_INFORMATION;

109

 member TAILORMADEORDER; } }

	Working Paper There is a working paper on universal database, which has been accepted for publication by, Sixth International conference on Database Management Systems (DMS-2015).

