

1

An open universal database gateway for non-stop Internet Computing with Replicate Flattened XML Documents

 Joseph Fong, and Kenneth Wong

Computer Science Department, City University of Hong Kong, Hong Kong, email: csjfong@cityu.edu.hk

Abstract
The DBMS of various data models have proliferated into many companies, and become their legacy databases. However, there is a
need to access these legacy databases for mass information transmission on the Internet for e-commerce. Most XML database
management systems can translate certain legacy databases into an XML(Extensible Model Language) document. However, the
translation is without data semantics constraints consideration for all legacy databases, which may not be sufficient to meet users’
requirements. Furthermore, the users may prefer to keep two production database systems such that a legacy database is for internal
data processing and a replicate XML document is for external Internet computing. This paper presents an open universal database
gateway (OUDG) which can capture the major data semantics of cardinality, isa, generalization and aggregation of a sender
company’s legacy database into a flattened XML document, and transmit and store it into a receiver company’s legacy database on
thea Internet. OUDG transforms legacy databases to flattened XML documents and then to receiver’s legacy database. As a result,
users can access each other’s legacy database through flattened XML document, which let users apply their own familiar query
language to access their partners’ legacy databases. For example, an user can use SQL (relational database language) to access object-
oriented, network, or XML databases. Similarly, an user can use OQL (object-oriented database language), IDMS (network database
language) and XQuery (XML database language) to access other legacy databases. Furthermore, since flattened XML documents is a
replication of sender’s legacy database, therefore, the senders can use legacy database for internal data processing, and its replicate
flattened XML documents for e-commerce Internet computing, in parallel non-stop processing.

Keywords: open universal database gateway, legacy databases, flattened XML Documents, e-commerce, data semantics, information
highway

1 Introduction
The evolution of database technologies intend to meet different users requirements. For example, the complex Hierarchical and
Network (Codasyl) databases(NDB) are good for business computing on the large mainframe computers. The user friendly relational
databases(RDB) are good for end user computing on personal computers. The object‐oriented databases(OODB) are good for

multi‐media computing on mini computers. The XML databases(XML DB) are good for Internet computing on the mobile devices.
Table 1 shows the evolution of databases on various platforms. These are first generation Hierarchical and Network databases, second
generation relational databases, and third generation Object-Oriented and XML databases.

Table 1 Platforms of Legacy Database technologies
 Network database Relational database Object-Oriented database XML database
Computer Language 3GL Cobol / C 4GL, SQL/Visual Basic 4GL, OQL XQuery, Web service
Operations Batch Job Triggers/ Stored

procedures
Object-Oriented features XQuery functions

User Interface Text mode Windows Windows Web pages
Machine Mainframe PC /Workstations Web services/ Browsers Web, Virtual machine

Flattened XML documents
Flattened XML documents are generic representation of any legacy database instance in any legacy database data model. Firstly,
legacy database can be transformed into flattened XML documents which can be further transformed into four legacy databases of
Relational, Object-Oriented, Network and XML data models. Flattened XML document is a valid XML document which contains a
collection of elements of various types and each element defines its own set of properties. The structure of the flattened XML
document data file is a relational table structured XML document. It has XML document syntax with relational table structure. It
replaces primary key with ID, and foreign key with IDREF as follows:

<?xml version="1.0">
<root>
 <table1 ID="…" IDREF1="…" IDREF2="…" … IDREFN="…">
 <attribute1>…</attribute1>
 …
 <attributeN>…</attributeN>

2

 </table1>
 …
 <tableN ID="…" IDREF1="…" IDREF2="…" … IDREFN="…">
 <attribute1>…</attribute1>
 …
 <attributeN>…</attributeN>
 </tableN>
</root>

For each table, the name of the table (tableN) determines its type name and the name of property (attributeN) determines its property
name. Each table defines an ID type attribute that can uniquely identify itself and there are optional multiple IDREF type attributes
that can refer to the ID in other tables in the same flattened XML document instance. Each property XML element encloses a property
value in a proper textual representation format. In order to ensure a flattened XML document instance to be valid, there must be either
an internal or an external DTD document that defines the XML structures and attribute types, in particular for those ID and IDREF
type attributes. The OUDG can transform legacy databases into flattened XML document, and then further transform the flattened
XML document into one of four receiver’s legacy databases: relational, object-oriented, XML and network. The result is that OUDG
allows users choose a legacy data model to receive the sender’s legacy databases with data semantics preservation.

This paper offers flattened XML documents as medium for the interoperability of all legacy databases that can be accessed by the
users using their own familiar legacy database language via OUDG. We consider hierarchical data model same as XML data model in
this paper because they are all in tree structure. All legacy data models can be united into flattened XML document as shown in Figure
1.

Figure 1 Legacy Databases Interoperability via Flattened XML documents

In Figure 1, proprietary legacy databases can be transformed into flattened XML documents as universal database. For example, in
Figure 2, OUDG transforms a network database into a flattened XML document and then to a relational database for e-commerce on
the Internet. In this case, receiver can access a network database as a relational database by using a Relational DBMS via OUDG.

Figure 2 Replicate Flattened XML Documents for Information Highway on the Internet

An e-commerce company uses OUDG to convert its production legacy databases of relational, network, object-oriented and XML into
flattened XML documents, and send them to its e-commerce partner on the Internet. The partner receives flattened XML document on
the Internet and uses OUDG to convert the flattened XML documents into the receiver’s legacy databases for storage. Then the

3

partner repeats the operations by converting its legacy databases into flattened XML documents and send them back to the company
who uses OUDG to convert the flattened XML documents back into legacy databases for storage.

An open universal database gateway(OUDG) is a database middleware which provides more flexibility for the users to access legacy
databases in their own chosen data model. In other words, users can apply OUDG to transform legacy databases into flattened XML
documents, and then further transform them into user’s own familiar legacy database for access. Since XML is the data standard on
the Internet, it becomes information highway for user to access data.

The reason we choose flattened XML document is due to its openness for DBMS independence. All other data models are DBMS
dependent. For example, an Oracle database can only be accessed by Oracle DBMS, and a MS SQL Server database can only be
accessed by MS SQL Server DBMS. Nevertheless, users can access flattened XML documents on the Internet by Internet Explorer
without programming. Furthermore, an Oracle user can access an MS SQL Server database after transforming the MS SQL Server
database into flattened XML document, and then to Oracle database by OUDG.

Similarly, the reason we choose relational table structure for the flattened XML document is that relational table structure has a strong
mathematical foundation of relational algebra to implement the constraints of major data semantics such as cardinality, isa,
generalization and aggregation to meet users’ data requirements.

Figure 3 shows the architecture of an open universal database gateway which transforms legacy databases into each other with
different data models via flattened XML document:

Figure 3 An open universal database gateway for legacy databases data materialization

Long-Term Impact:

4

At present, most database systems are proprietary. Each DBMS vendor has software tools which convert other legacy databases into
their databases, but not vice versa for converting their own databases into other legacy databases[7]. The result makes legacy
databases not open to each each. On the other hand, using OUDG, any legacy database can be transformed into any other legacy
database via flattened XML documents. The benefit is that data sharing and data conversion among legacy databases is much easier
than before.

Problems:
(1) In logistics industry, many inter-companies processes such as purchase orders and invoices, are exchanged by using Electronic Data
Interchange (EDI). These companies using EDI can reduce inventories, tighten supply chains and improve cash flow. However, not all
companies use EDI because EDI is too expensive, complex and not worth the investment. Internet provides an economical way for people
to communicate around the world. It is obvious that businesses make use of this low cost communication method to communicate and
exchange information with their business partners. XML document can be used in a myriad of ways across different platforms and in
different applications.
(2) Currently most XML documents are stored in XML database and are created on demand by converting a few relations into an XML
document. However, this approach lacks of data semantic constraints, and is restricted to relational data model only. It cannot be converted
into other legacy data models such as object-oriented, network and XML.
(3) All legacy database systems are proprietary. Database vendors do not facilitate tools to export their databases to other legacy
databases.
(4) Most users cannot access all legacy databases because they do not know all legacy database languages.
(5) It is difficult to convert legacy databases in different data models because the data conversion of legacy database involves data
models transformation.

Solution:
This paper proposes converting legacy databases into an information capacity equivalent and maintainable flattened XML document to
achieve the interoperability among legacy databases. Therefore, users can use same database language access different legacy databases
including relational, object-oriented, network and XML. Therefore, the operation can be more reliable and speedy because the same data
can be concurrently processed by legacy database languages and their replicated flattened XML document rapidly on the web at the
same time.

Academic merit:
XML document and legacy database data can be used in parallel processing for B2B and EDI in e-commerce on the Internet. Data can be
transmitted rapidly on the web even if its XML database is down since its counterpart legacy database can help to recover it very fast.
The result is a more reliable and concurrent Internet computing environment through flattened XML documents for the users. The
benefit is that we can create replicate flattened XML documents which are compatible with legacy databases for rapid user friendly
computing on the Internet.

Industrial merit:
The application of flattened XML document is for information highway on the Internet for data warehouse, decision support
systems[10], e-commerce, and cloud computing. The benefits are information sharing among users for database interoperability.

Application:
(1) Flattened XML document is an united model of all data models of legacy databases.
(2) OUDG helps users access all legacy databases via flattened XML documents on the Internet for information highway.
(3) OUDG can transform a legacy database into another legacy database via flattened XML documents for database reengineering,
recovery and integration.

Processing:
Pre-process: Reverse engineering legacy database schema into legacy database conceptual schema to recover data semantics. Schema
translation between legacy database schemas and flattened XML schema can be performed before data transformation.

Step 1 Transform sender’s legacy databases into flattened XML documents:
The OUDG transforms the legacy database into flattened XML documents according to the translated flattened XML schema in the
pre-process.

Step 2 Transform flattened XML documents into receiver’s legacy databases:
OUDG transforms the flattened XML documents into legacy database according to the translated legacy database schema in the pre-
process as shown in Figure 2.

5

Meta data
In order to abstract data semantics from legacy database, meta data is needed to store the corresponding cardinality, isa, generalization
and aggregation among various data models as follows:
 Table 2 Meta data tables for universal database
Relational database meta data (classification table)
Table
name

PR1 PR2 SR1 SR2 KAP KAG FKA NKA cardinality Isa Aggregation

Object-Oriented database meta data

Class name Attributes OID Stored OID(s) Cardinality isa Aggregation

XML database meta data
Element name Attribute(s) ID IDREF(s) Cardinality isa Aggregation

Network database meta data
Record Name Attribute(s) Key Owner Member Cardinality isa Aggregation

Where
Data Type = primitive data format of each attribute in the data model
Table name = relation name.
PR1 = This is a relation whose primary key does not contain a key of another relation.
PR2 = This is a relation whose primary key contains a key of another relation.
SR1 = This is a relation whose primary key is fully formed by concatenation of primary keys of other relations.
SR2 = This is a relation whose primary key is partially formed by concatenation of primary keys of other relations.
KAP = This is an attribute in the primary key of SR1 that is also a key of some primary relations PR1 or SR1.
KAG = These are all the other primary key attributes in a secondary relation SR1 or SR2 that are not of the KAP type.
FKA = This is a foreign key attribute of a relation.
NKA = This is a non-key attribute.
OID = object identity in object-oriented schema
Stored OID = The OID value of association attribute in object-oriented schema.
ID = unique address of an element data occurrence in XML schema.
IDREF = pointer structure of an element referring to another element data occurrence.
Owner = the owner record linked by a SET to a member record in network schema.
Member = the member record linked by a SET to a member record in network schema.
Key = the key attribute of a record in network schema.

Data flows:
(1) The data semantics of legacy database schemas are captured into a meta data.
(2) Legacy database schemas are mapped into a flattened XML document schema.
(3) The data of legacy database are transformed into the flattened XML document.
(4) The flattened XML document schemas are mapped into the legacy database schemas.
(5) The flattened XML document are transformed into the legacy database according to the mapped legacy database schema.

Data Semantics preservation in legacy databases
Data semantics describe data definitions and data application for users’ data requirements, which can be captured in the database
conceptual schemas. The following are the data semantics which can be preserved among the legacy conceptual schemas and in the
flattened XML schema:

(a) Cardinality: One-to-one, one-to-many and many-to-many relationships set between two classes
A one-to-one relationship between set A and set B is defined as: For all a in A, there exists at most one b in B such that a and b are
related, and vice versa. The implementation of one-to-one relationship is similar to one-to-many relationship.
A one-to-many relationship from set A to set B is defined as: for all a in A, there exists one or more b in B such that a and b are related.
For all b in B, there exists at most one a in A such that a and b are related.

6

A many-to-many relationship between set A and set B is defined as: For all a in A, there exists one or more b in B such that a and b
are related. Similarly, for all b in B, there exists one or more a in A such that a and b are related.
1:n is constructed by foreign key on “many” side referring to primary key on “one” side in relational schema; association attribute of a
class object on “one” side points to another class objects on “many” side in object-oriented schema; owner record occurrence on “one”
side and member record occurrences on “many” side in network schema; and element occurrence with IDREF on “many” side links
with element occurrence with ID on “one” side in XML schema.
As to m:n cardinality, it can be implemented by two 1:n cardinalities with 2 “one” side classes link with the same “many” side class.

 (b) Isa relationship between a superclass and a subclass
The relationship A isa B is defined as: A is a special kind of B.
A subclass relation has same primary key as its superclass relation, and refers it as a foreign key in relational schema; a subclass
inherits its superclass’s OID and attributes in object-oriented schema; an owner record has same key as its member record in network
schema via SET linkage and an element links one-to-one occurrence with its sub-element in XML schema.

(c) Generalization describes the relationship between one superclass and multiple subclasses.
They are in multiple isa relationships. For example A is a special kind of B, and C is also a special kind of B, then A and C subclasses
can be generalized as B superclass.
In relational schema, both superclass relation and subclass relation contain the same key, with subclass relations’ keys referring to
superclass key as foreign key. In object-oriented schema, multiple subclasses objects contain the same OID as their superclass object.
The subclasses’ objects inherit their superclass’s object attributes and methods. In network schema, one owner record links with
multiple member records through a SET. In XML, multiple subclass elements and their superclass element are in 1:1 linkage with
same key attribute.
Generalization can be implemented by multiple isa relationships with multiple subclasses generalized into one superclass.
(d) Aggregation is a method to form a composite object from its components.
It aggregates attribute values of an entity to form a whole entity. For example, if set B is part of set A, and set C is part of set A, then
sets B and C can be aggregated into set A.
If aggregation relation is deleted, then component relations is also deleted in relational schema. Similarly, an aggregation class owns
component classes such that the deletion of the owner class implies the deletion of its component classes in object-oriented schema.
Similarly, an aggregation record links with component records such that the deletion of the aggregation implies the deletion of the
component record in network schema. Also an aggregation element associates with component elements such that the deletion of the
former implies the deletion of the latter in XML schema.

Before data transformation, OUDG maps major data semantics of cardinality, isa, generalization and aggregation into each legacy data
model as shown in Table 3:

Table 3 Data semantics preservation in legacy data models and Flattened XML document

Data model\ Data
Semantic

Relational Object‐Oriented Network XML (in DTD) Flattened XML(in DTD)

1:n cardinality Many child relations’
foreign key referring to
same parent relation’s
primary key.

A class’s association
attribute associates to
another class’s
objects’ OID(s) as a
Stored OID.

An owner record data
points to many
member records data
via SET linkage.

An element contains
many sub-elements.

The IDREF(s) of a
“many” side sibling
element’s data refer to
an ID of “one” side
sibling element data.

m:n cardinality A relationship relation’s
composite key are
foreign keys referring to
2 other relations’
primary keys.

A class’s association
attribute refers to
another class’s
objects’ OID(s), and
vice versa.

Two owner records
data point to same
member record data
via 2 SETs linkages.

A sub-element links
1 element in
element sub-
element linkage and
links another
element by IDREF
referring to ID.

A sibling element data
contains 2 IDREF(s)
referring to the ID of 2
other sibling elements
data.

isa Subclass relation’s
primary key is also a
foreign key referring to
its superclass relation’s
primary key.

A subclass inherit
OID(s) and attributes
of its superclass as
its own additional
attributes.

An owner record data
links to a member
record data in 1:1
with same key.

An element
occurrence links a
sub-element
occurrence in 1:1
linkage.

The IDREF of a
subclass sibling
element data refers to
the ID of a superclass
sibling element with
the same key value.

Generalization 2 subclass relations’
primary keys are also
foreign keys referring to
same superclass

Two subclasses
inherit OID(s) and
attributes of same
superclass as their

An owner record data
points to two member
records data with
same key under 1

An element
occurrence links
with two sub-
elements in 1:1 data

The IDREF(s) of 2
subclass sibling
elements data refer to
an ID of a superclass

7

relation’s primary keys. own additional
attributes.

SET linkage.

occurrence linkages. sibling element data.
All of them have same
key value.

aggregation An aggregation relation
links with its component
relations. Delete
aggregation relation will
delete its components
relations.

An aggregation class
owns components
classes such that
delete aggregation
class will delete
component classes.

An aggregation
record points
components classes
such that delete
aggregation record
will delete
component records.

A group element
has component
elements such that
delete group
element will delete
component
elements.

A group element has
component elements
such that delete group
element will delete
component elements.

Functional dependencies
The preservation of data semantics among legacy databases can be verified by the preservation of their data dependencies as follows:

Definition of FD
Given a relation R, attribute Y of R is functionally dependent on attribute X of R, i.e., FD: R.X R.Y, iff each X-value in R has
associated with it precisely one Y value in R. Attribute X and Y may be composite.

Definition of ID

ID: Y Z states that the set of values appearing in attribute Y must be a subset of the set of values appearing in attribute Z.

Definition of MVD
Let R be a relation variable, and let A, B and C be the attributes of R. Then B is multi-dependent on A if and only if in every legal
value of R, the set of B values matching a given AC pair value depends on the A value, and is independent of the C value.

In general, the syntaxes of the three data semantics of cardinality, isa, generalization and aggregation representation of legacy
databases and the flattened XML schema can be shown in Figure 4. Similarly, the above data semantics can be preserved in flattened
XML documents with sibling elements only, linking with each other via IDREF and ID. as shown in Figure 5.

8

FD: B A FD: B A FD: B A FD: B A

MVD: A B

MVD: B A MVD: A B
MVD: B A

MVD: A B
MVD: B A

MVD: A B
MVD: B A

B2
b21

*A1
a11

B1
b11

Relations

R1

R2

A1
a11

A2
a21

a12 a22

b22 a12b21

(a) one-to-many cardinality

A A1
A2

Set AB

B B1
B2

Network conceptual
schema in Network Graph

A
A1
A2

B B1
B2

XML conceptual schema in
DTD Graph

A A1
A2

B B1
B2

Relational conceptual
schema in EER model

R

1

m

Object‐Oriented
Conceptual schema in UML

A

A1, A2

B

B1, B2

1

m *

Relational Schema

Relation A (A1, A2)
Relation B (B1, B2, *A1)

XML schema in DTD

<!ELEMENT A(B*)>
<!ATTLIST A1 CDATA #REQUIRED>
<!ATTLIST A2 CDATA #REQUIRED>
<!ELEMENT B EMPTY>
<!ATTLIST B1 CDATA #REQUIRED>
<!ATTLIST B2 CDATA #REQUIRED>

Network Schema

Record Name is A
A1 Character
A2 Character
Record Name is B
B1 Character
B2 Character
Set AB
Owner is A
Member is B

Object-Oriented Schema

Class A
 Attribute A1 Char
 Attribute A2 Char
 Attribute A2B set (B)
End
Class B
Attribute B1 Char
Attribute B2 Char
Attribute B2A (A)
End

B2

b21

B1

b11

Records

A

B

A1

a11

A2

a21

a12 a22

b22b12

a22

A2A1OIDA

a21#1
#2 a22a12

a11

Classes

B2B1OIDB

b21#3
#4 b22b12

b11
Stotred OID

#1
#2

<A A1=＂a11" A2=＂a12">
 <B B1="b11">

<B B1="b12" >

<A A2=＂a21" A2=＂a22">
 <B B1="b21">

<B B1="b22" >

XML Docment

Stored_OID

#3, #4
#3, #4

A

B

A A1
A2

B
B1
B2

AB

n

m

A

A1, A2

B

B1, B2

n

m

A
A1
A2

Set A2B

AB

B
B1
B2

Set B2B

A
A1
A2

B
B1
B2

AB idref

id*

Relational conceptual
schema in EER model

Network conceptual
schema in Network Graph

Object‐Oriented
Conceptual schema in UML

XML conceptual schema in
DTD Graph

(b) many-to-many cardinality

Relational Schema

Relation A (A1, A2)
Relation B (B1, B2)
Relation AB (*A1, *B1)

XML schema in DTD

<!ELEMENT A(AB*)>
<!ATTLIST A1 CDATA #REQUIRED>
<!ATTLIST A2 CDATA #REQUIRED>
<!ELEMENT AB EMPTY>
<!ATTLIST AB_iderf IDREF #REQUIRED>
<!ELEMENT B EMPTY>
<!ATTLIST B id ID CDATA #REQUIRED>
<!ATTLIST B1 CDATA #REQUIRED>
<!ATTLIST B2 CDATA #REQUIRED>

Network Schema

Record Name is A
A1 Character
A2 Character
Record Name is B
B1 Character
B2 Character
Record Name is AB
Set A2B
Owner is A
Member is AB
Set B2B
Owner is B
Member is AB

Object-Oriented Schema

Class A
 Attribute A1 Char
 Attribute A2 Char
 Attribute A_B set (B)
End
Class B
Attribute B1 Char
Attribute B2 Char
Attribute B_A set (A)
Member is B

*B1
b11

B1
b11

*A1
a11

Relations

A

AB

A1
a11

A2
a21

a12 a22

b21

b21

a12

B2

b21

B1

b11

Records

A

B

A1

a11

A2

a21

a12 a22

b22b12

Classes
XML Docment

<A A1=＂a11", A2=＂a21">
<AB idref=＂1"></AB>

 <AB idref=＂2"></AB>

<A A1=＂a12", A2=＂a22">

<AB idref=＂1"></AB>

 <B B1="b11" B2=＂b12" id=1">
<B B1="b12" B2=＂b12" id=2">

B2
b12
b22

B A2A1OIDA

a21#1
#2 a22a12

a11

B2B1OIDB

b21#3
#4 b22b12

b11
Stotred OID

#1, #2
#1, #2

Stored_OID

#3, #4
#3, #4

AB

A1 B1
a11 b11
a12 b12

A

B

9

ID: (B , C) AID: (B , C) A ID: (B , C) A ID: (B , C) A

ID: B A ID: B A
ID: B A ID: B A

(c) Isa relationship

A

A1, A2

B

A1, A3
B

Set

A A1
A2

A1
A3

B

A A1
A2

A1
A3

A

B A1
A3

A1
A2

Relational conceptual
schema in EER model

Network conceptual
schema in Network Graph

Object‐Oriented
Conceptual schema in UML

XML conceptual schema in
DTD Graph

Relational Schema

Relation A (A1, A2)
Relation B (*A1, A3)

XML schema in DTD

<!ELEMENT A(B?)>
<!ATTLIST A1 #REQUIRED>
<!ATTLIST A2 #REQUIRED>
<!ELEMENT B EMPTY>
<!ATTLIST A1 #REQUIRED>
<!ATTLIST A3 #REQUIRED>

Network Schema

Record Name is A
A1 Character
A2 Character
Record Name is B
A1 Character
A3 Character
Set AB
Owner is A
Member is B

Object-Oriented Schema

Class A
 Attribute A1 Char
 Attribute A2 Char
End
Class B subclass of class A
Attribute A1 Char
Attribute A3 Char
End

A3
a31

*A1
a11

Relations

A

B

A1
a11

A2
a21

a12 a22

a32a21
A1

a11

Records

A

B

A1

a11

A2

a21

a12 a22

a12

A2A1OIDA

a21#1
#2 a22a12

a11

Classes

A1OIDB

#1
#2 a12

a11

<A A1=＂a11" A2=＂a12">
<B A1=＂a11" A3="a31" >

<A A1=＂a21" A2=＂a22">

<B A1=＂a21" A3="a32" >

XML document

A3

a31

a32

A3

a31

a32

A2

a21

a22

A

A1, A2

B

A1, A3
B

Set AB

C

A A1
A2

A1
A3

A1
A4

B C

A A1
A2

,A1
A3

A1
A4

A

B

o

C A1
A4

A1
A3

A1
A2

C

A1, A4

Relational conceptual
schema in EER model

Network conceptual
schema in Network Graph

Object‐Oriented
Conceptual schema in UML

XML conceptual schema in
DTD Graph

Relational Schema

Relation A (A1, A2)
Relation B (*A1, A3)
Relation C (*A1, A4)

XML schema in DTD

<!ELEMENT A (B, C)>
<!ATTLIST A1 #REQUIRED>
<!ATTLIST A2 #REQUIRED>
<!ELEMENT B EMPTY>
<!ATTLIST A1 #REQUIRED>
<!ATTLIST A3 #REQUIRED>
<!ELEMENT C EMPTY>
<!ATTLIST A1 #REQUIRED>
<!ATTLIST A4 #REQUIRED>

Network Schema
Record Name is A
A1 Character
A2 Character
Record Name is B
A1 Character
A3 Character
Record Name is C
A1 Character
A4 Character
Set AB
Owner is A
Member is B
Set AC
Owner is A
Member is C

Object-Oriented Schema

Class A
 Attribute A1 Char
 Attribute A2 Char
End
Class B subclass of class A
Attribute A1 Char
Attribute A3 Char
End
Class C subclass of class A
Attribute A1 Char
Attribute A4 Char
End

A3
a31

*A1
a11

Relations

A

B

A1
a11

A2
a21

a12 a22

a32a21

C
*A1 A4
a11 a41
a21 a42

Records
A

B

A1

a11

A2

a21

a12 a22

C
A4

a41

a42

A2A1OIDA

a21#1
#2 a22a12

a11

Classes

A1OIDB

#1 a11

A1OIDB

#2 a12

<A A1=＂a11" A2=＂a12">
<B A1=＂a11" A3="a31" >

<A A1=＂a21" A2=＂a22">

<C A1=＂a11" A4="a41" ></C>

XML document

Set AC

A1

a11

a12

*A1 A3
a11 a31
a12 a32

A2

a21

A3

a31

(d) generalization

A

B C

10

Figure 4 Data semantics preservation in equivalent legacy databases

11

Figure 5 Data semantics preservation in flattened XML documents

12

2 Related Works
On data transformation
Shoshani[1] defined logical level approach data conversion by using source and target schemas to perform data type conversion
instead of physical data type conversion. He provided a general methodology of using logical level approach of downloading source
legacy database into sequential file and uploading them into target legacy database for data transformation.

Lum et al[2] showed how to construct data conversion languages SDDL and TDL to extract and restrict data from source legacy
database into target legacy database.

Fong and Bloor [3] described mapping navigational semantics of the network schema into a relational schema before converting data
from network database to relational database.

Fong[4] presented a methodology of transforming object-oriented database objects into Relational database by using SQL Insert
statements.

Fong and Shiu[5] designed a Semantic Export Markup Language as a data conversion language to export component of relational
database into XML database.

Fong et al.[6] applied logical level approach for data materialization between relational database and object-oriented database using
sequential file as medium.

On Heterogeneous database
Given huge investment for a company put into heterogeneous databases, it is difficult for company convert them into homogeneous
databases for new applications. Therefore, researchers have come up with a solution of universal databases that can be accessed as
homogeneous databases by the user[9]. For instance, we can provide an relational interface to non‐relational database such as

Hierarchical, Network, Object‐Oriented and XML[16].

Hsiao and Kamel[7] offered a solution of multiple-models-and-languages-to-multiple-models-and–languages mapping to access
heterogeneous databases.

Fong[8] suggested translating heterogeneous database schemas into Extended Entity Relationship Model as a conceptual schema for
information retrieval. There are tools that perform transaction translation from SQL to other DBMS’s data manipulation language.

On Universal database
Fong[9] proposed using a frame model metadata to unite different data models of various databases as an universal database, which
can perform data operations in a table.

Fong et al.[10] applied universal database system to access universal data warehousing for the integration of both relational databases
and object-oriented databases with star schema and OLAP functions.

Silverston and Graziano[11] used a universal data model in a diagram to design the conceptual schema of different legacy data models
of any legacy database.

On Homogeneous database
Timos Sellis, Chih-Chen Lin, and Louiqa Raschid [12] presented a solution to decompose and store the condition elements in the
antecedents of rules such as those used in production rule-based systems in homogeneous databases environment using relational data
model.

On schema translation

13

Navathe et. al. [13] offered a reverse engineering solution to extract the data semantics from the relationships of the primary keys and
foreign keys in relational schema into an Extended Entity Relationship Model.

Funderburk et al. [14] proposed DTD Graph as XML conceptual schema which is identical to DTD, but in a graph format.

On Cloud Database
[15] defines cloud database as databases in virtual machines.

On Relational Interface
Fong[16] applied an relational API (application program interface) to access hierarchical and network databases by SQL, schema
translation pre-processing and online transaction translation.

On Flattened XML document
Fong et al.[17] converted an XML document into Relational database by transforming XML document into flattened XML document
with relational table structure by Extensible Stylesheet Language Transformation.

This paper extends the work of universal database into an “open” universal database gateway. The limitation of an universal database
gateway is restricted to a particular DBMS. For example, the user can access all legacy databases by using SQL on the non‐relational
database even though their DBMS(s) may not be all relational. Nevertheless, the restriction of such solution is that the user must
depend on a particular relational database language to access heterogeneous databases.

This paper offers an open database in flattened XML document. The “openness” of universal database gateway is “flexible DBMS”
independent while the universal database is “fixed DBMS” dependent. The OUDG provides users the flexibility of choosing any
DBMS for legacy databases.

Similarly, OUDG differs from ODBC because ODBC requires programming solution to access different relational databases while
OUDG transforms all legacy databases into each other for e-commerce through a database gateway middleware. Furthermore, OUDG
can reengineer the obsolete Hierarchical or Network database into XML documents on the Internet as the trend of IT technology.

3 Methodology of open universal database gateway(OUDG)
This paper proposes OUDG as a database middleware to access legacy databases via flattened XML documents as an open database as
follows:

Sender Legacy databases Flattened XML documents (universal database) Receiver Legacy databases

The major functions of OUDG are:

(1) Pre-process of recovering data semantics from legacy databases:
In general, the data semantics are presented in the legacy database conceptual schemas. However, if the legacy database conceptual
schemas do not exist or become obsolete, it is necessary to recover their data semantics by reverse engineering legacy database logical
schema into legacy database conceptual schema.

For example, to recover an EER model from a relational schema, a classification table can be used to define the relationship between
keys and attributes in all relations, and data semantics can be recover accordingly. A 1:n cardinality in relational schema can be
recovered from a foreign key(FKA) between two relations in classification table, with foreign key relation on “many” side and
referred primary key relation on “one” side etc.

Similarly, we can recover 1:n association between two associated objects with a Stored OID in a class referring to many OID(s) in
another associated class in OODB. We can also recover 1:n cardinality from owner and members records of Network schema into
Network database conceptual schema, and also element and sub-elements in XML schema into XML conceptual schema as shown in
table 2.

For example, we can apply classification table to abstract cardinality into EER model from relational schema[13][23]. We can also
extract XML schema from XML document using reverse engineering[22].

14

(2) Transform sender’s legacy databases into flattened XML documents
Any legacy database can be transformed into flattened XML document as follows:

Case 1: Transform relational databases into flattened XML documents
Firstly, we perform the preprocess of mapping relational schema into flattened XML schema. Secondly, we perform their
correspondent data conversion. The Input is a relational database and the output is an flattened XML document. The system will read
relational table according to the legacy relational schema. In one-to-many data semantic, it will post parent and child relations into
table structured sibling XML elements linked with id and idref. In many-to-many data semantic, it will post 2 relations and their
relationship relation into table structured XML sibling elements linked with idref(s) and id(s). In isa data semantic, it will post
superclass and subclass relations into table structured XML sibling elements linked with id and idref with the same key as shown in
Figure 4 and Figure 5.

Algorithm: Map relational schema into flattened XML schema
Begin
 Select an artifact root element for flattened XML schema;
 Map all parent only (PR1 in classification table) entities into sibling elements under root element;
 If relation B foreign key refers to relation A primary key
 Then begin
 Map relations A and B of 1:n cardinality into sibling elements A and B of 1:n cardinality;
 /*A is one and B is many */
 map relation A into sibling element A with ID;
 map relation B into sibling element B with IDREF refer to the above ID;
 end;
 If relation B has a primary key which is also a foreign key refers to relation A primary key
 Then begin
 /* Map subclass relation A isa superclass relation B into sibling element A isa sibling element B */
 map relation A into sibling element A with ID value of relation key value;
 map relation B into sibling element B with IDREF value of the same relation key value;
 end;
 If (relation A and relation B is in 1:n cardinality) And (relation C and relation B is in 1:n)
 Then relation A and relation C are in m:n cardinality;
 If (relation A isa relation B) and (relation C isa relation B)
 Then subclass relation A and subclass relation C are generalized into superclass relation B;
 If a composite key of a relationship relation BC refer primary keys of relations B and C
 Then begin
 /* Map aggregation of relations BC,B,C into aggregation of sibling elements BC,B,C */
 map relation B into sibling element B with ID value;
 map relation C into sibling element C with ID value;
 map relation BC into sibling element BC with IDREF(s) refer to the above ID(s);
 end;
End;

Algorithm: Transform relational database to flattened XML document
Input: Relational database
Output: Flattened XML document
begin
 Create a raw XML document with an arbitrary root element r
 For each table do
 begin
 For each record rec do
 begin
 Create an XML element e named as its table name
 If table of the record defines a primary key pk
 then begin
 Create an ID attribute id named table-name.column-name with value table-name.primary-key-value;
 Add the above id as attribute of e;
 end;
 For each foreign key fk of the table do
 begin

15

 Create an IDREF attribute idref named primary-table-name.foreign-key-column-name with value
 primary-table-name.foreign-key-value;
 Add the above idref as attribute of e;
 end
 end
 Add e as child element of r;
 end

Case 2: Transform XML databases into flattened XML documents
Firstly, we perform the preprocess of mapping XML schema into flattened XML schema. Secondly, we perform their correspondent
data conversion. The Input is an XML database and the output is a flattened XML document with relational table structure. The
system will read XML document according to the XML schema. In one-to-many data semantic, it will post element and sub-element
into XML sibling elements linked with id and idref. In many-to-many data semantic, it will post 3 elements linked with id(s) and
idref(s) into XML sibling elements linked with id(s) and idref(s). In isa data semantic, it will post superclass and subclass elements
into XML sibling elements linked with id and idref with the same key as shown in Figure 4 and Figure 5.

Algorithm: Map XML schema into flattened XML schema:
Begin
 If element A and its sub-element B have same attribute a1 in XML schema
 Then begin

/* Map subclass element A isa superclass element B into sibling elements A isa B */
map element A with key a1 into sibling element A with key a1 and an ID value into flattened XML schema;
map element B with key a1 into sibling element B with key a1 and IDREF with above ID value into XML schema;

 end;
 If (sub-element B under element A) or (element B has an IDREF referring to element A ID value)
 Then begin

/* Map sibling elements A and B in 1:n cardinality into elements A and B in 1:n cardinality */
 Map element A into sibling element A wth an ID value in flattened XML schema;
 Map element B into sibling element B with an IDREF referring to the above ID value in flattened XML schema;
 End;
 If (element A and element B is in 1:n cardinality) And (element C and element B is in 1:n)
 Then element A and element C are in m:n cardinality in XML schema;
 If (element A isa element B) and (element C isa element B)
 Then element A and element C are generalized into element B; /* A,C are subclasses to superclass B */
 If a group element BC has component elements B and C
 Then begin
 /* Map aggregation with elements BC,B,C into aggregation with sibling elements BC,B,C */
 map element B into sibling element B with ID value;
 map element C into sibling element C with ID value;
 map element BC into sibling element BC with IDREF(s) refer to the above ID(s);
 end;
End;

Algorithm: Transform an XML document to a flattened XML document
Input: an XML document
Output: a flattened XML document
Begin
 Perform depth first search on the input XML document instance;
 For each XML element do
 begin
 Add an ID attribute id with value “entity:sequence_number”;
 Add an IDREF attribute idref with value “parent_element_name:seqeuence number of parent;
 Create a new blank XML document with root as root element;
 Perform depth first search (top-to-bottom, left-to-right and front-to-back) on the input XML document instance;
 For each element in the input XML document instance do
 Add a sibling XML element with attributes id and idref to the new XML document;
end;

Case 3: Transform Object Oriented database into flattened XML document

16

Firstly, we perform the preprocess of mapping object-oriented schema into flattened XML schema. Secondly, we perform their
correspondent data conversion. The Input is an OODB and the output is a flattened XML document. The system will read OODB
according to OODB schema. In one-to-many data semantic, it will post object and set of associated objects into XML sibling elements
linked with id and idref. In man-to-many data semantic, it will post 2 sets of associated objects with a common object into 3 XML
sibling elements such that a sibling element with 2 IDREF(s) referring 2 sibling elements with 2 ID(s)). In isa data semantic, it will
post superclass and subclass objects with same OID into XML sibling elements linked with id and idref with the same key as shown in
Figure 4 and Figure 5.

Algorithm: Map object-oriented schema into flattened XML schema:
Begin
 If B is subclass of class A
 Then begin
 /* Map subclass class B isa superclass class A into sibling element A isa sibling element B */
 map class A with OID into sibling element A with ID value same as OID of element A;
 map class B with same OID as above into sibling element B with IDREF referring to the above ID value;
 end;
 If class A has association attribute (A2B) referring to class B’s multiple objects
 Then begin
 /* Map Classes A and B in 1:n cardinality into sibling elements B and C in 1:n cardinality */
 Map class A with OID into sibling element A with ID value same as OID;
 Map class B with stored OID into sibling element B with IDREF referring to the above ID value;
 End;
 If (sibling element A and sibling element B are in 1:n cardinality) And (sibling element C and sibling element B is in 1:n)
 Then sibling element A and sibling element C are in m:n cardinality;
 If (sibling element A isa sibling element B) and (sibling element C isa sibling element B)
 Then sibling element A and sibling element C are generalized into sibling element B; /*A,C are subclass to superclass B*/
 If a class BC owns classes B and C
 Then begin
 /* Map aggregation with classes BC,B,C into aggregation with sibling elements BC,B,C */
 map class B into sibling element B with ID value;
 map class C into sibling element C with ID value;
 map class BC into sibling element BC with IDREF(s) refer to the above ID(s);
 end;
End;

Algorithm of transforming OODB to flattened XML documents
Input: An OODB instance
Output: A flattened XML document
Begin
 Create a flattened XML document with a root element
 For each class c in OODB do
 Begin
 For each object obj in class c do
 Begin
 Derive an OID for class c for object obj;
 Create a sibling XML element for object obj as child element of root element of flattened XML document with OID
 as ID type attribute;
 End
 For each association attribute of obj do
 Begin
 For each stored referred obj do
 Begin
 Locate the corresponding sibling XML element e in flattened XML document:
 Create an IDREF attribute for element e:
 End
 End
 End
End

17

Case 4: Transform Network databases into flattened XML documents
Firstly, we perform the preprocess of mapping network schema into flattened XML schema. Secondly, we perform their correspondent
data conversion. The Input is a Network database(NDB) and the output is a table structured flattened XML document. The system will
read NDB according to NDB schema. In one-to-many data semantic, it will post owner and member records into XML sibling
elements linked with id and idref. In many-to-many data semantic, it will post 2 owners and 1 common member records into XML
sibling elements linked with id(s) and idref(s). In isa data semantic, it will post an owner and a member records into XML sibling
elements linked with id and idref with the same key as shown in Figure 4 and Figure 5.

Preprocess algorithm: Map Network schema into flattened XML schema:

Begin
 If (owner record A has a key value attribute a1) and (member record B under owner record A has same key value a1)
 Then begin
 /* Map subclass Record B isa superclass record A into sibling element A isa sibling element B */
 Map record A into sibling element A with an attribute a1 and with ID value into flattened XML schema;
 Map record B into sibling element B with as above and an IDREF referring to element A’s ID value into flattened XML
 schema;
 End;
 If member record B under owner record A
 Then begin
 /* Map Records A and B in 1:n cardinality into sibling elements A and B in 1:n cardinality */
 Map record A into sibling element A with ID value into flattened XML schema;
 Map record B into sibling element B with IDREF referring to the above ID value into flattened XML schema;
 End;
 If (sibling element A and sibling element B is in 1:n cardinality) And (sibling element C and sibling element B is in 1:n)
 Then sibling element A and sibling element C are in m:n cardinality;
 If (sibling element A isa sibling element B) and (sibling element C isa sibling element B)
 Then subclass sibling element A and subclass sibling element C are generalized into superclass sibling element B;
 If an owner record BC has member records B and C
 Then begin
 /* Map aggregation with sibling elements BC,B,C into aggregation with elements BC,B,C */
 map record B into sibling element B with ID value;
 map record C into sibling element C with ID value;
 map record BC into sibling element BC with IDREF(s) refer to the above ID(s);
 end;
 End;

Algorithm of transforming NDB to flattened XML documents
Input: A NDB instance
Output: A flattened XML document
Begin
 Create a flattened XML document with a root element
 For each record type t in NDB do
 begin
 For each record r of type t do
 Begin
 Locate the key for type t for record r;
 Create a sibling XML element for record r as child element of root element of flattened XML document with key as
 ID type attribute;
 End
 end
 For each set s in NDB do
 Begin
 For each i in s do
 Begin
 For the non-owner record type t defined by s do
 Begin
 Locate the corresponding sibling XML element e in flattened XML documents;
 Create an IDREF attribute for sibling element e for the owner record defined by I;

18

 End
 End
End

Step 2: Transform flattened XML documents into receiver’s legacy databases
In step 2, we can translate the flattened XML schema into another legacy database schema, followed by the data transformation of the
flattened XML documents into a legacy database according to the translated legacy database schema. In this way, each source
database data type can be read by the legacy database schema. Therefore, there is no need for physical data type conversion in this
approach. Therefore, we can post the flattened relational structured XML document into a legacy database of relational, object-
oriented, network or XML.

Case 5: Transform flattened XML documents into relational databases
Firstly, we perform the preprocess of mapping flattened XML schema into flattened XML schema. Secondly, we perform their
correspondent data conversion. The Input is a flattened XML document and the output is a relational database. The system will read
flattened XML document according to flattened XML document schema. In one-to-many data semantic, it will post XML sibling
elements into parent and child relations. In many-to-many data semantic, it will post XML sibling elements linked with id(s) and
idref(s) into 2 parents and 1 child relations. In isa data semantic, it will post XML sibling elements into superclass relation and sub-
class relation as shown in Figure 4 and Figure 5.

Algorithm: Map flattened XML schema into relational schema:
Begin
 If (sibling element A with ID value of relation key value) and (sibling element B with IDREF value of the same relation
 key value)
 Then begin
 /* Map subclass Sibling element B isa superclass sibling element A into relation A isa relation B */
 Map sibling element A into relation A with primary key = ID value;
 Map sibling element B into relation B with primary key = foreign key with same value;
 End;
 If (sibling element A with ID value) and (sibling element B with IDREF value of the same value)
 Then begin
 /* Map Sibling elements A and B in 1:n cardinality into relations A and B in 1:n cardinality */
 Map sibling element A into relation A with primary key = ID value;
 Map sibling element B into relation B with foreign key referring to primary key ID value;
 End;
 If (sibling element A and sibling element B is in 1:n cardinality)
 And (sibling element C and sibling element B is in 1:n)
 Then sibling element A and sibling element C are in m:n cardinality;
 If (sibling element A isa sibling element B) and (sibling element C isa sibling element B)
 Then subclass sibling A and subclass sibling element C are generalized into superclass sibling element B;
 If an aggregation exists with component sibling elements BC, B and C
 Then begin
 /* Map aggregation with sibling elements BC, B and C into aggregation with relations BC, B and C */
 map sibling element B with ID into relation B with ID as primary key value;
 map sibling element C with ID into relation C with ID as primary key value;
 map sibling element BC with 2 IDREF(s) into sibling element BC with IDREF(s) as composite key refer to the
 above ID(s);
 end;
End;

Algorithm: Create RDB SQL statements from flattened XML document
Input: flattened XML document
Output: A sequence of SQL statements
Begin
 Let s be an empty statement sequence;
 For each sibling XML element with entity prefix e do
 begin
 Derive table name t from sibling element name of e without entity prefix;
 For each sub element c of e do /* extract attributes from the sub-elements in flattened XML document */
 Begin

19

 Derive col from name of c without property prefix;
 Derive val from child text node contents of c;
 If c is the first sub element
 Then begin
 Let cols = "col";
 Let vals = "'val'";
 End;
 Else begin
 Append ",col" to cols;
 Append ",'val'" to vals;
 End;
 End
 Let i = "INSERT INTO t (cols) VALUES (vals)";
 Add i to s;
 End
 Return s
End

Case 6: Transform flattened XML documents into object-oriented databases
Firstly, we perform the preprocess of mapping flattened XML schema into object-oriented schema. Secondly, we perform their
correspondent data conversion. The Input is a flattened XML document and the output is an object-oriented database. The system will
read flattened XML document according to flattened XML document schema. In one-to-many data semantic, it will post XML sibling
elements into a pair of associated objects with OID and Stored OID. In many-to-many data semantic, it will post XML sibling
elements linked with id(s) and idref(s) into a pair of associated objects. In isa data semantic, it will post XML sibling elements into
superclass and its sub-class object as shown in Figure 4 and Figure 5.

Algorithm: Map flattened XML schema into object-oriented schema:
Begin
 If (sibling element A with an attribute a1 and an ID value)
 And (sibling element B with same attribute a1 and an IDREF value same as the above ID value)
 Then begin
 /* Map sibling element B isa sibling element A into class B isa class A */
 map sibling element A into class A with attribute a1 into object-oriented schema;
 map sibling element B into subclass B of class A in object-oriented schema;
 end;
 If (sibling element A with an ID value)
 And (sibling element B with an IDREF value referring to the above ID value)
 Then begin
 /* Map sibling elements A and B in 1:n cardinality into classes A and B in 1:n cardinality */
 map sibling element A into class A with association attribute A2B referring to class B’s multiple objects in OODB
 schema;
 map sibling element B into class B with association attribute B2A referring to class A’s object in OODB schema;
 end;
 If (sibling element A and sibling element B is in 1:n cardinality)
 And (sibling element C and sibling element B is in 1:n)
 Then sibling element A and sibling element C are in m:n cardinality;
 If (sibling element A isa sibling element B) and (sibling element C isa sibling element B)
 Then sibling A and sibling element C are generalized into sibling element B; /*A,C are subclass & B is their superclass */
 If an aggregation exists with component sibling elements BC, B and C
 Then begin
 /* Map aggregation with sibling elements BC, B and C into aggregation with relations BC, B and C */
 map sibling element B with ID into relation B with ID as primary key value;
 map sibling element C with ID into relation C with ID as primary key value;
 map sibling element BC with 2 IDREF(s) into sibling element BC with IDREF(s) as composite key refer to the
 above ID(s);
 end;
 end;
Algorithm: Create OODB statements from flattened XML documents
Input: flattened XML document

20

Output: A sequence of OODB OQL statements
Begin
 For i = 1 to m do /* for each sibling element Ai with data occurrence A1….Am */
 For j = 1 to n do /* for each sibling element Aj data occurrence A1…An such that i≠j*/
 Begin
 If (sibling element Ai ID name = sibling element Ai IDREF name)
 and (sibling element Aj ID name = sibling element Ai IDREF name)
 Then sibling element Ai isa sibling element Aj; /* subclass element Ai and superclass element Aj */
 If sibling element Ai ID name = sibling element Aj IDREF name
 Then sibling element Ai and sibling element Aj are in 1:n cardinality; /* element Ai links many element Aj */
 If sibling element Ai IDREF name = sibling element Aj ID name
 Then sibling element Ai and sibling element Aj are in n:1 cardinality; /* many element Ai links element Aj */

Case sibling element Ai and sibling element Aj are in
1:n begin
 Output insert statement with Ai data + association attribute value “{}”;
 Output insert statement with Aj data;
 End;
n:1 begin
 Output insert statement with Ai data;
 Output insert statement with Aj data + association attribute null value;
 End;
Isa: begin
 Output insert statement with Ai data + to-be-inherited superclass attributes value with the same key;
 Output insert statement with Aj data;
 End;
Case end;
 End;
 For i = 1 to m do /* for each sibling element Ai with data occurrence A1….Am */
 For j = 1 to n do /* for each sibling element Aj data occurrence A1…An such that i≠j*/
 Begin
 Case sibling element Ai and sibling element Aj are in
 1:n: Output update statement of Aj to replace “{}” value with associated Stored OID(s) in text file T;
 n:1: Output update statement of Aj to replace null value with associated Stored OID in text file T;
 case end;
 end;
 Execute OODB DML (data manipulation statements) in the text file T by OODB DBMS (database management systems);
end

Case 7 Transform flattened XML documents into network databases:
Firstly, we perform the preprocess of mapping flattened XML schema into network schema. Secondly, we perform their correspondent
data conversion.

The Raima database is used as the reference network database implement. In order to import data to the NDB, Raima provides utility
that can read sequence data file. Therefore, the algorithm provided below is to translate the flattened XML document file into plain
text sequential file.

For example, the Raima database defines its own data definition language. To define an entity type with properties, use a record
definition:
record investor {
double money_mkt;
char name;
unique key short invID;}

To define the linkages among the entities, use the set definition:

set inv_trans {
order last;
owner investor;

21

member asset;}

Once the database definition is properly defined with a DDL file, Raima provides utility application and API for creating the database.

The Input is a flattened XML document and the output is a network database. The system will read flattened XML document
according to flattened XML document schema. In one-to-many data semantic, it will post XML sibling elements into a pair of owner
and member records. In man-to-many data semantic, it will post XML sibling elements linked with id(s) and idref(s) into 2 owners
link with 1 member record with the same key. In isa data semantic, it will post XML sibling elements into 1 owner and 1 member
record with the same key as shown in Figure 4 and Figure 5.

Algorithm: Map flattened XML schema into network schema:
Begin
 If (sibling element A with an attribute a1 and an ID value)
 And (sibling element B with same attribute a1 and an IDREF value same as the above ID value)
 Then begin
 /* Map sibling element B isa sibling element A into record B isa record A */
 map sibling element A with attribute a1 into owner record A with key attribute a1 into network schema;
 map sibling element B with attribute a1 into member record B under record A with same attribute a1 into network
 schema ;
 end;
 If (sibling element A with an ID value)
 And (sibling element B with an IDREF value referring to the above ID value)
 Then begin
 /* Map sibling elements A and B in 1:n cardinality into records A and B in 1:n cardinality */
 map sibling element A with attribute ID value a1 into owner record A with key attribute a1 into network schema;
 map sibling element B into member record B under record A into network schema;
 end;
 If (sibling element A and sibling element B is in 1:n cardinality)
 And (sibling element C and sibling element B is in 1:n)
 Then sibling element A and sibling element C are in m:n cardinality;
 If (sibling element A isa sibling element B) and (sibling element C isa sibling element B)
 Then sibling A and sibling element C are generalized into sibling element B; /*A,C are subclass, & B is their superclass */
 If an aggregation exists with component records BC, B and C
 Then begin
 /* Map aggregation with sibling elements BC, B and C into aggregation with records BC, B and C */
 map sibling element B with ID into record B with ID as primary key value;
 map sibling element C with ID into record C with ID as primary key value;
 map sibling element BC with 2 IDREF(s) into owner record BC with member records B and C via a SET;
 end;
end;

Algorithm Transform flattened XML document into Network database:
//* Create CSV file from flattened XML document */
begin Read flattened XML document
 For each XML element e do
 Begin
 Derive the internal table name t from element name of e;
 Use t as the CSV file name;
 For each sibling element c of e do;
 Begin
 Derive val from attribute contents of c;
 If c is the first sibling element
 Then begin
 Let vals =’val’;
 End;
 Else begin
 Let vals =’val’;
 Append “,” to vals;
 End;

22

 Add vals to the CSV file;
 Begin
 Export the CSV file;
 End
End

Case 8: Transform flattened XML documents into XML databases
Firstly, we perform the preprocess of mapping flattened XML schema into XML schema. Secondly, we perform their correspondent
data conversion.

The Input is a flattened XML document and the output is an XML document. The system will read flattened XML documents
according to flattened XML documents schema. In one-to-many data semantic, it will post XML sibling elements into a pair of XML
element and sub-elements. In many-to-many data semantic, it will post XML sibling elements linked with id(s) and idref(s) into XML
elements and sub-element. In isa data semantic, it will post XML sibling elements with the same key into XML element and sub-
elements with the same key as shown in Figure 4 and Figure 5.

Algorithm: Map flattened XML schema into XML schema:
Begin
 If (sibling element A with an attribute a1 and an ID value)
 And (sibling element B with same attribute a1 and an IDREF value same as the above ID value)
 Then begin
 /* Map subclass sibling element B isa superclass sibling element A into element B isa element A */
 map sibling element A into element A with attribute a1 in XML schema;
 map sibling element B into element B with attribute a1 and IDREF value same as above ID value in XML schema;
 end;
 If (sibling element A with an ID value)
 And (sibling element B with an IDREF value referring to the above ID value)
 Then begin
 /* Map sibling elements A and B in 1:n cardinality into elements A and B in 1:n cardinality */
 map sibling element A into element A in XML schema;
 map sibling element B into element B under element A in XML schema;
 end;
 If (sibling element A and sibling element B is in 1:n cardinality)
 And (sibling element C and sibling element B is in 1:n)
 Then sibling element A and sibling element C are in m:n cardinality;
 If (sibling element A isa sibling element B) and (sibling element C isa sibling element B)
 Then sibling A and sibling element C are generalized into sibling element B; /*A,C are subclass & B is their superclass */
 If an aggregation exists with component sibling elements BC, B and C
 Then begin
 /* Map aggregation with sibling elements BC, B and C into aggregation with elements BC, B and C */
 map sibling element B with ID into element B with same ID value;
 map sibling element C with ID into element C with same ID value;
 map sibling element BC with 2 IDREF(s) into a group element BC with member elements B and C;
 end;
end;

Algorithm: Post flattened XML document into an XML document
Input: A flattened XML document
Output: An XML document
Begin
 Let xml = replicate of flattened XML document;
 Call Restructure XML with xml;
 Return xml
End
Function: Restructure XML
Begin
 For each sibling XML element e with one IDREF attribute idref do
 begin
 Locate sibling element e’ with ID referred by idref;

23

 Move e as child element of e’;
 Remove attribute idref from element e;
 End
End

3 Case Study:

A logistic system records the customer shipment information including which orders are being packed and what the packing
information is. Based on the XML schema below, there are three intermediate independent entities: PL_INFORMAION recording the
general information of the shipment, PL_LINE_INFORMATION storing the packing information ― particularly information about
the BOXES ― and ORDER_INFORMATION storing the information of orders such as the product information. A many-to-many
relationship between ORDER_INFORMATION and PL_LINE_DETAIL must be resolved early in the modeling process to eliminate
repeating information when representing PL_INFORMATION or ORDER_INFORMATION[18]). The strategy for resolving many-
to-many relationship[s] is to replace the relationship with two one-to-many cardinality with an association entity and then relate the
two original entities to the association entity[19]. As a result, these two one-to-many relationships are between
PL_LINE_INFORMATION and PL_LINE_DETAIL, and between ORDER_INFORMATION and PL_LINE_DETAIL. Similarly,
the ORDER_INFORMATION can be divided into BulkOrder and CustomerOrder in generalization as shown in Figure 5.

Step 1: Data transformation from relational database into flattened XML document:
The input relational conceptual schema in Extended Entity Relationship model

Bulk_Order
TailorMade

Order

O

PL_INFORMATION

PL_LINE_INFORMATION ORDER_INFORMATION

include

PL_LINE_DETAIL

FD: PL_LINE_INFORMATION PL_INFORMATION
FD: PL_LINE_INFORMATION, ORDER_INFORMATION PL_LINE_DETAIL
ID: Bulk_Order ORDER_INFORMATION

PL_INFORMATION_SEQNO,
ISSUE_DATE,
DATE_LAST_MODIFIED,
LAST_MODIFIED_BY,
PL_STATUS,
PL_HEADER_REMARKS,
SHIPMENT_DATE,
EXPECTED_ARRIVAL_DATE

PL_INFORMATION_SEQNO,
PL_LINE_INFORMATION_SEQNO,
PACKAGE_TYPE,
LENGTH_UNIT_OF_MEASURE,
HEIGHT_UNIT_OF_MEASURE,
WEIGHT_UNIT_OF_MEASSAGE

ORDER_NUMBER,
BRAND,
DIVISON,
CUSTOMER_ORDER_NUMBER,
CUSTOMER_NUMBER,
ORDER_TYPE, MODEL_NUMBER,
MODEL_DESCRIPTION,
ORDER_DATE, ORDERED_QTY,
RICE+PRE_UNIT, DISCOUNT

ITEM_NUMBER,
TOTAL_PACKED_QTY,
TOTAL_GROSS_WEIGHT,
TOTAL_VOLUME,
TOTAL_VOLUME_LENGTH,
TOTAL_VOLUME_WIDTH,
TOTAL_VOLUME_HEIGHT

ORDER_NUMBER,
CUSTOMER_NAME
SIZE_INDEX,
UNIT_PRICE

ORDER_NUMBER,
CUSTOMER_NAME
SIZE_INDEX,
UNIT_PRICE

1

N

NM

ID: TailorMadeOrder ORDER_INFORMATION

Figure 5 Input relational database conceptual schema in Extended Entity Relationship model

There are six tables. Each table has its primary key in italic, and foreign key prefixed with “*”. Their data dependencies are such that
each foreign key determines its referred primary key in FD, and subclass foreign key is a subset of its superclass primary key in ID as
shown in Figure 5.

24

Source Relational database:

Table PL_INFORMATION
PL_INFORMATI
ON_SEQNO

ISSUE_
DATE

DATA_LAST_
MODIFIED

LAST_MODI
FIED_BY

PL_STAT
US

PL_HEADER+REMA
RKS

SHIPMENT_
TYPE

SHIPMENT
_DATE

EXPERCTED_ARRI
VAL_DATE

EFG123DS 2004-07-
31

2004-08-02 JOEY S SOME GOODS ARE
BREAKABLE

TRAIN 2004-08-03 2004-08-03

Table PL_LINE_INFORMATION
*PL_INFROAMATIO
N-SEQNO

PL_LINE_INFORM
ATOIN_SEQNO

PACKAGE_
TYPE

LENGTH_UNIT_O
F_MEASURE

WIDTH_UNIT_OF_
MEASURE

HEIGHT_UNIT_OF_
MEASURE

WEIGHT_UNIT_OF_
MESSAGE

EFG123DS ABCV234F BOX 20 20 20 40
EFG123DS ABCN439WS BAG 7 13 10 13

Table PL_LINE_DETAIL
*PL_INFORMATI
ON_SEQNO

*PL_LINE_INFORM
ATION_SEQNO

*ORDER_
NUMBER

ITEM_NU
MBER

TOTAL_PAC
KED_QTY

TOTAL_GROSS
_WEIGHT

TOTAL_VOLUME
_LENGTH

TOTAL_VOLUM
E_WIDTH

TOTAL_VOLUME
N_HEIGHT

EFG123DS ABCV234F 135792468 1 4 12 5 2 6
EFG123DS ABCV234F 123469999 2 1 28 8 4 6
EFG123DS ABCH439WS 135792468 1 4 12 5 2 6
Table ORDER_INFORMATION
ORDER_NU
MBER

BRAN
D

DIVISIO
N

CUSTOMER_ORD
ER_NUMBER

CUSTOMER_N
UMBER

ORDER_
TPYE

MODEL_N
UMBER

MODEL_DESC
RIPTION

ORDER_
DATE

ORDERD_
QTY

PRICE_PRE
_UNIT

DISCOU
NT

135792468 ABC CLOTHI
NG

135792468 MA23456 MAIL AS1234 ADULT T-
SHIRT SIZE M

2004-07-
27

8 10.5

123469999 DONY TOYS 123456999 MA23456 PHONE PS2 PLAYSTATION 2004-07-
29

1 1399 10

Table BulkOrder

*ORDER_NUMBER CUSTOMER_NAME SIZE_INDEX UNIT_PRICE

135792468 AMAZON S 12.1

Table TailorMadeOrder

*ORDER_NUMBER CUSTOMER_NAME SIZE_INDEX UNIT_PRICE

123469999 PETER CHAN L 12.3

We map input relational schema into an flattened XML OUDG schema with relational structure in two levels tree only as shown in
Figure 6. Notice that the second level elements (under root elements) are linked together using idref referring to id, which is similar to
foreign key referring to primary key.

Figure 6 Transformed flattened XML document conceptual schema in DTD Graph

There are seven elements. The second level elements has id(s) and/or idref(s). Their data dependencies are such that each idref
determines its referred id FD as shown in Figure 6.

25

The flattened XML document schema is:

<?xml version="1.0"?>
<!DOCTYPE db-prototype [
<!ELEMENT db-prototype (t-bulk_order*,t-order_information*,t-
pl_information*,t-pl_line_detail*,t-pl_line_information*,t-
tailor_made_order*)>
<!ELEMENT t-bulk_order (c-ORDER_NUMBER,c-
CUSTOMER_NAME,c-SIZE_INDEX,c-UNIT_PRICE)>
<!ELEMENT t-order_information (c-ORDER_NUMBER, c-
BRAND,c-DIVISION, c-CUSTOMER_ORDER_NUMBER, c-
CUSTOMER_NUMBER, c-ORDER_TPYE, c-MODEL_NUMBER,
c-MODEL_DESCRIPTION, c-ORDER_DATE, c-ORDERD_QTY,
c-PRICE_PER_UNIT,c-DISCOUNT)>
<!ELEMENT t-pl_information (c-PL_INFORMATION_SEQNO, c-
ISSUE_DATE,c-DATE_LAST_MODIFIED, c-
LAST_MODIFIED_BY, c-PL_STATUS, c-
PL_HEADER_REMARKS, c-SHIPMENT_TYPE, c-
SHIPMENT_DATE, c-EXPECTED_ARRIVAL_DATE)>
<!ELEMENT t-pl_line_detail (c-PL_INFORMATION_SEQNO, c-
PL_LINE_INFORMATION_SEQNO, c-ORDER_NUMBER, c-
ITEM_NUMBER, c-TOTAL_PACKED_QTY, c-
TOTAL_GROSS_WEIGHT, c-TOTAL_VOLUME_LENGTH, c-
TOTAL_VOLUME_WIDTH, c-TOTAL_VOLUMEN_HEIGHT)>
<!ELEMENT t-pl_line_information (c-
PL_INFORMATION_SEQNO, c-
PL_LINE_INFORMATION_SEQNO, c-PACKAGE_TYPE, c-
LENGTH_UNIT_OF_MEASURE, c-
WIDTH_UNIT_OF_MEASURE, c-
HEIGHT_UNIT_OF_MEASURE, c-
WEIGHT_UNIT_OF_MESSAGE)>
<!ELEMENT t-tailor_made_order (c-ORDER_NUMBER,c-
CUSTOMER_NAME,c-SIZE_INDEX,c-UNIT_PRICE)>
<!ELEMENT c-BRAND (#PCDATA)>
<!ELEMENT c-CUSTOMER_NAME (#PCDATA)>
<!ELEMENT c-CUSTOMER_NUMBER (#PCDATA)>
<!ELEMENT c-CUSTOMER_ORDER_NUMBER (#PCDATA)>
<!ELEMENT c-DATE_LAST_MODIFIED (#PCDATA)>
<!ELEMENT c-DISCOUNT (#PCDATA)>
<!ELEMENT c-DIVISION (#PCDATA)>
<!ELEMENT c-EXPECTED_ARRIVAL_DATE (#PCDATA)>
<!ELEMENT c-HEIGHT_UNIT_OF_MEASURE (#PCDATA)>
<!ELEMENT c-ISSUE_DATE (#PCDATA)>
<!ELEMENT c-ITEM_NUMBER (#PCDATA)>
<!ELEMENT c-LAST_MODIFIED_BY (#PCDATA)>
<!ELEMENT c-LENGTH_UNIT_OF_MEASURE (#PCDATA)>
<!ELEMENT c-MODEL_DESCRIPTION (#PCDATA)>
<!ELEMENT c-MODEL_NUMBER (#PCDATA)>
<!ELEMENT c-ORDERD_QTY (#PCDATA)>

<!ELEMENT c-ORDER_DATE (#PCDATA)>
<!ELEMENT c-ORDER_NUMBER (#PCDATA)>
<!ELEMENT c-ORDER_TPYE (#PCDATA)>
<!ELEMENT c-PACKAGE_TYPE (#PCDATA)>
<!ELEMENT c-PL_HEADER_REMARKS (#PCDATA)>
<!ELEMENT c-PL_INFORMATION_SEQNO (#PCDATA)>
<!ELEMENT c-PL_LINE_INFORMATION_SEQNO (#PCDATA)>
<!ELEMENT c-PL_STATUS (#PCDATA)>
<!ELEMENT c-PRICE_PER_UNIT (#PCDATA)>
<!ELEMENT c-SHIPMENT_DATE (#PCDATA)>
<!ELEMENT c-SHIPMENT_TYPE (#PCDATA)>
<!ELEMENT c-SIZE_INDEX (#PCDATA)>
<!ELEMENT c-TOTAL_GROSS_WEIGHT (#PCDATA)>
<!ELEMENT c-TOTAL_PACKED_QTY (#PCDATA)>
<!ELEMENT c-TOTAL_VOLUMEN_HEIGHT (#PCDATA)>
<!ELEMENT c-TOTAL_VOLUME_LENGTH (#PCDATA)>
<!ELEMENT c-TOTAL_VOLUME_WIDTH (#PCDATA)>
<!ELEMENT c-UNIT_PRICE (#PCDATA)>
<!ELEMENT c-WEIGHT_UNIT_OF_MESSAGE (#PCDATA)>
<!ELEMENT c-WIDTH_UNIT_OF_MEASURE (#PCDATA)>
<!ATTLIST t-bulk_order t-bulk_order.c-ORDER_NUMBER ID
#REQUIRED>
<!ATTLIST t-bulk_order t-order_information.c-ORDER_NUMBER
IDREF #IMPLIED>
<!ATTLIST t-order_information t-order_information.c-
ORDER_NUMBER ID #REQUIRED>
<!ATTLIST t-pl_information t-pl_information.c-
PL_INFORMATION_SEQNO ID #REQUIRED>
<!ATTLIST t-pl_line_detail t-order_information.c-
ORDER_NUMBER IDREF #IMPLIED>
<!ATTLIST t-pl_line_detail t-pl_line_detail.c-
PL_INFORMATION_SEQNO.c-
PL_LINE_INFORMATION_SEQNO.c-ORDER_NUMBER ID
#REQUIRED>
<!ATTLIST t-pl_line_detail t-pl_line_information.c-
PL_INFORMATION_SEQNO.c-
PL_LINE_INFORMATION_SEQNO IDREF #IMPLIED>
<!ATTLIST t-pl_line_information t-pl_information.c-
PL_INFORMATION_SEQNO IDREF #IMPLIED>
<!ATTLIST t-pl_line_information t-pl_line_information.c-
PL_INFORMATION_SEQNO.c-
PL_LINE_INFORMATION_SEQNO ID #REQUIRED>
<!ATTLIST t-tailor_made_order t-order_information.c-
ORDER_NUMBER IDREF #IMPLIED>
<!ATTLIST t-tailor_made_order t-tailor_made_order.c-
ORDER_NUMBER ID #REQUIRED>
]>

The flattened XML document is shown in Figure 7.

26

Figure 7 Transformed flattened XML document

Phase II: Data transformation from flattened XML document into legacy databases

We can then map the open universal database schema into legacy databases as follows:

(a) Data transformation from flattened XML document into XML database

We can map the open universal database schema into XML database schema as shown in Figure 5. Figure 8 shows that elements
Pl_information and Pl_line_information are in element and sub-element 1:n association. Elements Pl_line_information, Pl_line_detail
and Order_information are in m:n association linked by pairs of idref referring to id. Elements Order_information and Bulk_Order are
in 1:1 association. Elements Order_information and TailorMadeOrder are also in 1:1 association. This XML structure has multiple
levels of elements which is different from the 2 levels elements in Open universal database schema.

27

Figure 8 Translated XML document schema in DTD Graph

For example, Figure 8 shows the mapping into UML for object-oriented database schema. The class PL_Information and class
Pl_line_information are in 1:n association. Classes Pl_line_information and Order_information are in m:n association with class
Pl_line_detail as association class in between. Classes BulkOrder and TailorMadeOrder are in disjoint generalization under their
superclass Order_information such that the two subclasses data are mutually exclusive.

There are seven elements. The sub-element key determines its element key in FD. The idref can determine its referred id in FD. The
subclass element key is a subset of its superclass key in ID as shown in Figure 8.

The output XML database schema is:

The output XML database schema is:

<!ELEMENT prototype (PL_INFORMATION,
ORDER_INFORMATION)>
<!ELEMENT PL_INFORMATION (PL_LINE_INFORMATION*)>
<!ATTLIST PL_INFORMATION
 PL_INFORMATION_SEQNO CDATA #REQUIRED

 ISSUE_DATE CDATA #REQUIRED
DATE_LAST_MODIFIED CDATA #REQUIRED
LAST_MODIFIED_BY CDATA #REQUIRED
PL_STATUS CDATA #REQUIRED
PL_HEADER_REMARKS CDATA #REQUIRED
SHIPMENT_DATE CDATA #REQUIRED
EXPECTED_ARRIVAL_DATE CDATA #REQUIRED>

<!ELEMENT PL_LINE_INFORMATION (PL_LINE_DETAIL)>
<!ATTLIST PL_LINE_INFORMATION
 PL_INFORMATION_SEQNO CDATA #REQUIRED

PL_LINE_INFORMATION_SEQNO CDATA
#REQUIRED
PACKAGE_TYPE CDATA #REQUIRED
LENGTH_UNIT_OF_MEASURE CDATA #REQUIRED
WIDTH_UNIT_OF_MEASURE CDATA #REQUIRED
HEIGHT_UNIT_OF_MEASURE CDATA #REQUIRED
WEIGHT_UNIT_OF_MEASURE CDATA #REQUIRED>

<!ELEMENT PL_LINE_DETAIL EMPTY>
<!ATTLIST PL_LINE_DETAIL

idref1 IDREF IMPLIED
 PL_INFORMATION_SEQNO CDATA #REQUIRED

PL_LINE_INFORMATION_SEQNO CDATA
#REQUIRED
ORDER_NUMBER CDATA #REQUIRED

ITEM_NUMBER CDATA #REQUIRED
TOTAL_GROSS_WEIGHT CDATA #REQUIRED
TOTAL_VOLUME_WIDTH CDATA #REQUIRED
TOTAL_VOLUME_HEIGHT CDATA #REQUIRED>

<!ELEMENT ORDER_INFORMATION (BULKORDER,
TAILORMADEORDER)>

<!ATTLIST ORDER_INFORMATION
id1 ID #REQUIRED

 ORDER_NUMBER CDATA #REQUIRED
BRAND CDATA #REQUIRED
DIVISION CDATA #REQUIRED
ORDER_TYPE CDATA #REQUIRED
MODEL_NUMBER CDATA #REQUIRED
MODEL_DESCRIPTION CDATA #REQUIRED

 ORDER_DATE CDATA #REQUIRED
ORDERED_QTY CDATA #REQUIRED
PRICE_PRE_UNIT CDATA #REQUIRED
DISCOUNT CDATA #REQUIRED>

<!ELEMENT BULKORDER EMPTY>
<!ATTLIST BULKORDER
 CUSTOMER_NAME CDATA #REQUIRED

SIZE_INDEX CDATA #REQUIRED
UNIT_PRICE CDATA #REQUIRED>

<!ELEMENT TAILORMADEORDER EMPTY>
<!ATTLIST TAILORMADEORDER
 CUSTOMER_NAME CDATA #REQUIRED

SIZE_INDEX CDATA #REQUIRED
UNIT_PRICE CDATA #REQUIRED>

</ORDER

28

The output XML database document is:

(b) Data transformation from flattened XML documents into Object-Oriented databases

Figure 9 Translated legacy object-oriented database schema in UML

29

In figure 9, record Pl_informations and Order_information are under network DBMS as first records for database navigation access
path. The path can go from record Pl_information to Pl_line_information in owner and member record in 1:n relationship. Records
Pl_line_information (owner), Order_information(owner) and Pl_line_detail (member) are in flex structure such that records
Pl_line_information and Order_information they are in m:n relationship. Records Order_information and BulkOrder are in 1:1
relationship. Similarly, records Order_information and TailorMadeOrder are in 1:1 relationship. The set records are pointers only.

There are six classes. Each class has its OID, and Stored OID. Their data dependencies are such that each Stored OID key determines
its referred OID in FD, and each subclass OID is a subset of its superclass OID in ID as shown in Figure 9.

The output Object-Oriented database schema is:

CREATE class PL_INFORMATION;

CREATE class PL_LINE_DETAIL;

Create class ORDER_INFORMATION;

create class PL_LINE_INFORMATION
(PL_LINE_INFORMATION_SEQNO varchar(20),

WIDTH_UNIT_OF_MEASURE varchar(20),
LENGTH_UNIT_OF_MEASURE varchar(20),
PACKAGE_TYPE varchar(20),
HEIGHT_UNIT_OF_MEASURE varchar(20),
WEIGHT_UNIT_OF_MESSAGE varchar(20),
PL_INFORMATION_SEQNO varchar(20),

 pl_line_detail_ass set of (PL_LINE_DETAIL),
 pl_information_ass2 PL_INFORMATION);

alter class PL_INFORMATION
Add attribute
EXPECTED_ARRIVAL_DATE varchar(20),
PL_STATUS varchar(20),
SHIPMENT_TYPE varchar(20),
ISSUE_DATE varchar(20),
DATE_LAST_MODIFIED varchar(20),
SHIPMENT_DATE varchar(20),
LAST_MODIFIED_BY varchar(20),
PL_HEADER_REMARKS varchar(40),
PL_INFORMATION_SEQNO varchar(20),
pl_line_information_ass set of (PL_LINE_INFORMATION);

alter class PL_LINE_DETAIL
Add attribute PL_INFORMATION_SEQNO varchar(30),
 PL_LINE_INFORMATION_SEQNO

varchar(30),
 ORDER_NUMBER varchar(30),
 ITEM_NUMBER varchar(30),

 TOTAL_PACKED_QTY varchar(30),
 TOTAL_GROSS_WEIGHT varchar(30),
 TOTAL_VOLUME_LENGTH varchar(30),
 TOTAL_VOLUME_WIDTH varchar(30),
 TOTAL_VOLUMEN_HEIGHT varchar(30),
 pl_line_information_ass2

PL_LINE_INFORMATION,
 order_information_ass2

ORDER_INFORMATION;

alter class ORDER_INFORMATION
Add attribute ORDER_NUMBER varchar(30),
 BRAND varchar(30),
 DIVISION varchar(30),
 CUSTOMER_ORDER_NUMBER varchar(30),
 CUSTOMER_NUMBER varchar(30),
 ORDER_TPYE varchar(30),
 MODEL_NUMBER varchar(30),
 MODEL_DESCRIPTION varchar(40),
 ORDER_DATE varchar(30),
 ORDERD_QTY varchar(30),
 PRICE_Per_UNIT varchar(30),
 DISCOUNT varchar(30),
 pl_line_detail_ass set of (PL_LINE_DETAIL);

create class Bulk_Order as subclass of ORDER_INFORMATION
(CUSTOMER_NAME varchar(20),
 SIZE_INDEX varchar(20),
 UNIT_PRICE varchar(20)
);
create class Tailor_Made_Order as subclass of
ORDER_INFORMATION
(CUSTOMER_NAME varchar(20),
 SIZE_INDEX varchar(20),
 UNIT_PRICE varchar(20)
);

The output Object-Oriented Database Base is:

30

(d) Data transformation from flattened XML OUDG into Network database

Figure 10 Translated legacy network database schema in Network Graph

31

There are six records. Each record class has key. The member record key determines its owner record key in FD, and subclass record
key is a subset of its superclass record key as shown in Figure 10.

The output Network database schema is:

database NDB1 {
 data file "NDB1.000" contains Network_DBMS;
 data file "NDB1.001" contains PL_INFORMATION;
 data file "NDB1.002" contains PL_LINE_INFORMATION;
 data file "NDB1.003" contains PL_LINE_DETAIL;
 data file "NDB1.004" contains ORDER_INFORMATION;
 data file "NDB1.005" contains BULKORDER;
 data file "NDB1.006" contains TAILORMADEORDER;
 key file "NDB1.k01" contains Pl_information_seqno;
 key file "NDB1.k02" contains A;
 key file "NDB1.k03" contains B;
 key file "NDB1.k04" contains C;
 key file "NDB1.k05" contains D;
 key file "NDB1.k06" contains E;
 record Network_DBMS {
 }
 record PL_INFORMATION {
char SHIPMENT_DATE[31];
char PL_STATUS[31];
char SHIPMENT_TYPE[31];
char ISSUE_DATE[31];
char DATE_LAST_MODIFIED[31];
char EXPECTED_ARRIVAL_DATE[31];
char LAST_MODIFIED_BY[31];
char PL_HEADER_REMARKS[31];
key char Pl_information_seqno[31];
 }
 record PL_LINE_INFORMATION {
char WIDTH_UNIT_OF_MEASURE[31];
char LENGTH_UNIT_OF_MEASURE[31];
char PACKAGE_TYPE[31];
char HEIGHT_UNIT_OF_MEASURE[31];
char PL_LINE_INFORMATOIN_SEQNO[31];
char WEIGHT_UNIT_OF_MESSAGE[31];
char PL_INFORMATOIN_SEQNO[31];

compound key A {
PL_INFORMATOIN_SEQNO;
PL_LINE_INFORMATOIN_SEQNO;
}
}
 record PL_LINE_DETAIL {
char TOTAL_VOLUME_WIDTH[31];
char PL_LINE_INFORMATION_SEQNO[31];
char TOTAL_VOLUMEN_HEIGHT[31];
char TOTAL_PACKED_QTY[31];
char TOTAL_VOLUME_LENGTH[31];
char ITEM_NUMBER[31];
char ORDER_NUMBER[31];
char TOTAL_GROSS_WEIGHT[31];
char PL_INFORMATION_SEQNO[31];
compound key B {
PL_INFORMATION_SEQNO;
PL_LINE_INFORMATION_SEQNO;
ORDER_NUMBER;
}
}
record ORDER_INFORMATION{

char PRICE_PRE_UNIT[31];
char DIVISION[31];
char ORDER_DATE[31];
char CUSTOMER_ORDER_NUMBER[31];
char ORDER_TPYE[31];
char MODEL_NUMBER[31];
char MODEL_DESCRIPTION[31];
char CUSTOMER_NUMBER[31];
char BRAND[31];
char DISCOUNT[31];
char ORDER_NUMBER[31];
char ORDERD_QTY[31];
compound key C {
ORDER_NUMBER;
}
}
record BULKORDER{
 char CUSTOMER_NAME[31];
 char UNIT_PRICE[31];
 char ORDER_NUMBER[31];
 char SIZE_INDEX[31];
compound key D {
ORDER_NUMBER;
}
}
record TAILORMADEORDER{
 char CUSTOMER_NAME[31];
 char UNIT_PRICE[31];
 char ORDER_NUMBER[31];
 char SIZE_INDEX[31];
compound key E {
ORDER_NUMBER;
}
}
 set pl_information {
 order last;
 owner Network_DBMS;
 member PL_INFORMATION;
 }
 set pl_line_information {
 order last;
 owner PL_INFORMATION;
 member PL_LINE_INFORMATION;
 }
 set pl_line_detail1 {
 order last;
 owner PL_LINE_INFORMATION;
 member PL_LINE_DETAIL;
 }
 set order_information {
 order last;
 owner Network_DBMS;
 member ORDER_INFORMATION;
 }
 set pl_line_detail2 {
 order last;
 owner ORDER_INFORMATION;
 member PL_LINE_DETAIL;
 }
 set BulkOrder {

32

 order last;
 owner ORDER_INFORMATION;
 member BULKORDER;
 }
 set TailorMadeOrder {

 order last;
 owner ORDER_INFORMATION;
 member TAILORMADEORDER;
 }
}

(e) Data transformation from flattened XML documents to relational database

RDB (output) schema

CREATE TABLE bulk_order (
CUSTOMER_NAME VARCHAR(10),
UNIT_PRICE VARCHAR(10),
ORDER_NUMBER VARCHAR(10),
SIZE_INDEX VARCHAR(10),
PRIMARY KEY (ORDER_NUMBER));
CREATE TABLE tailor_made_order (
CUSTOMER_NAME VARCHAR(10),
UNIT_PRICE VARCHAR(10),
ORDER_NUMBER VARCHAR(10),
SIZE_INDEX VARCHAR(10),
PRIMARY KEY (ORDER_NUMBER));
CREATE TABLE order_information (
CUSTOMER_ORDER_NUMBER VARCHAR(10),
DISCOUNT VARCHAR(10),
CUSTOMER_NUMBER VARCHAR(10),
ORDER_TPYE VARCHAR(10),
BRAND VARCHAR(10),

MODEL_DESCRIPTION VARCHAR(10),
MODEL_NUMBER VARCHAR(10),
ORDER_NUMBER VARCHAR(10),
ORDERD_QTY VARCHAR(10),
DIVISION VARCHAR(10),
ORDER_DATE VARCHAR(10),
PRICE_PER_UNIT VARCHAR(10),
PRIMARY KEY (ORDER_NUMBER));
CREATE TABLE pl_line_information (
PL_INFORMATION_SEQNO VARCHAR(10),
PL_LINE_INFORMATION_SEQNO VARCHAR(10),
WIDTH_UNIT_OF_MEASURE VARCHAR(10),
HEIGHT_UNIT_OF_MEASURE VARCHAR(10),
PACKAGE_TYPE VARCHAR(10),
WEIGHT_UNIT_OF_MESSAGE VARCHAR(10),
LENGTH_UNIT_OF_MEASURE VARCHAR(10),

33

PRIMARY KEY
(PL_INFORMATION_SEQNO,PL_LINE_INFORMATION_SEQN
O));
CREATE TABLE pl_line_detail (
TOTAL_VOLUME_LENGTH VARCHAR(10),
PL_INFORMATION_SEQNO VARCHAR(10),
TOTAL_GROSS_WEIGHT VARCHAR(10),
TOTAL_VOLUME_WIDTH VARCHAR(10),
TOTAL_VOLUMEN_HEIGHT VARCHAR(10),
ORDER_NUMBER VARCHAR(10),
TOTAL_PACKED_QTY VARCHAR(10),
PL_LINE_INFORMATION_SEQNO VARCHAR(10),
ITEM_NUMBER VARCHAR(10),
PRIMARY KEY
(PL_INFORMATION_SEQNO,PL_LINE_INFORMATION_SEQN
O,ORDER_NUMBER));
CREATE TABLE pl_information (
SHIPMENT_DATE VARCHAR(10),
ISSUE_DATE VARCHAR(10),
DATE_LAST_MODIFIED VARCHAR(10),
PL_INFORMATION_SEQNO VARCHAR(10),
PL_STATUS VARCHAR(10),

SHIPMENT_TYPE VARCHAR(10),
PL_HEADER_REMARKS VARCHAR(10),
EXPECTED_ARRIVAL_DATE VARCHAR(10),
LAST_MODIFIED_BY VARCHAR(10),
PRIMARY KEY (PL_INFORMATION_SEQNO));
ALTER TABLE bulk_order ADD FOREIGN KEY
(ORDER_NUMBER) REFERENCES
order_information(ORDER_NUMBER);
ALTER TABLE tailor_made_order ADD FOREIGN KEY
(ORDER_NUMBER) REFERENCES
order_information(ORDER_NUMBER);
ALTER TABLE pl_line_information ADD FOREIGN KEY
(PL_INFORMATION_SEQNO) REFERENCES
pl_information(PL_INFORMATION_SEQNO);
ALTER TABLE pl_line_detail ADD FOREIGN KEY
(ORDER_NUMBER) REFERENCES
order_information(ORDER_NUMBER);
ALTER TABLE pl_line_detail ADD FOREIGN KEY
(PL_INFORMATION_SEQNO,PL_LINE_INFORMATION_SEQN
O) REFERENCES
pl_line_information(PL_INFORMATION_SEQNO,PL_LINE_INFO
RMATION_SEQNO);

4 Performance Analysis

1) Performance system platform
To access the relative performance of the database legacy, we performed the OODB experiment in a VM installed on an IBM server
(xSeries 335 / 8676) with Intel(R) Xeon(R) CPU X5650 with clock rate of 2.67 GHz, 2GB of main memory. The other experiments
are performed on an IBM blade server with Intel(R) Xeon(R) CPU X5660 with clock rate of 2.80 GHz, 2GB of main memory. The
operating system and DMBS using for the experiment are recorded in the table 2. The UDB software is written in Java 2.

2) DBMS for database

34

Table 4 DBMS table

 RDB source Flattened XML RDB XML OODB NDB

Server OS Window 7 Window 7 Window 7 Window 7 Window2000 Window 7

DBMS MySQL eXist Oracle eXist UniSQL Raima

3) Result in diagram

First, we bulk load 400 record of Relational database source of the prototype OUDG. Then we measure the time for these 4 output
database legacy for this bulk load (Table 5).
Second, we query the data from one table from each database legacy. We measure the time and recorded in table 6.

Table 5 Bulk load

Dataset RDB source Flattened XML RDB(Oracle) XML OODB NDB

x400 27 sec 0.51 sec 2 sec 0.51 sec 0.5 sec 0.53 sec

Table 6 Selection (Based on a condition, eg, Select bulk_order table)

Dataset RDB source Flattened XML RDB(Oracle) XML OODB NDB

x400 4 sec 0.006 sec 1 sec 0.006 sec 0.5 sec 0.14 sec

The above figure was compared the bulk load and selection performance analysis in 4 output database legacy. The X axis represents
the record time(second) while the Y axis represents 4 output database legacy from the UDB. From the figure above, RDB is poorest in
performance in both bulk load and selection while XML is the best for selection.

Summary

In theory, the performance of OODB, NDB, XML are better than RDB in bulk load, in the sequence of selection performance are
XML > NDB > OODB> RDB. It is because XML are in Dom Tree structure which is the best for selection. RDB requires value match,
therefore it’s performance is poorest. NDB is pointer structure, so it is better than OODB which requires table format and pointer
structure.

As a result, we proved that it is valuable for user to transform the Relational database to other type of database legacy by OUDG if the
user wants to have a higher performance of their database.

5 Conclusion

0
0.5
1

1.5
2

2

0.51 0.5 0.53
1

0.006
0.5

0.14
Record Time

(Second)

Bulk Load and Selection
Performance Analysis

Bulk Load Selection

35

Since relational database is the most user friendly legacy database, and XML database is the most portable database for information
highway on the Internet. In this project, we propose a Flattened XML database as universal database such that it is most user friendly
and portable as a database middleware for all legacy database.

The uniqueness of the paper are:

(1) Openness of an universal database:

The reason we choose flattened XML document is due to its openness, and DBMS independence. All other data models are DBMS
dependent. Nevertheless, users can use OUDG to access any legacy database via flattened XML documents on the Internet by Internet
Explorer without programming. Furthermore, an Oracle user can access an MS SQL Server database after transforming the Oracle
database into flattened XML document, and then to MS SQL Server database by OUDG.

(2) Recovery of legacy database:

Since flattened XML document is a replicate legacy database, it can be used to recover any legacy database whenever the production
legacy database is down. As a result, replicate XML document can be parallel processing with legacy database in non-stop computing.

(3) Heterogeneous databases integration for data warehousing:

By transforming all in-house legacy databases into a common legacy database, companies can use OUDG to transform its
heterogeneous databases into homogeneous databases, and integrate them into a logical view for data warehousing application.

(4) Portability of Flattened XML document as Universal database

The OUDG solution is not limited to using a particular DBMS, but allows users of any legacy database access other legacy database.
The proposed OUDG unites all legacy databases data models into one data model of flattened XML schema. The portability of the
proposed flattened XML document can be transferred into any open platform.

In summary, the data conversion methodology of this OUDG is to download the raw data of source database into sequential file using
source database schema, and upload the sequential file into target database using translated target database schema, which is a logical
level approach, and which can avoid physical data type conversion. Therefore, the methodology can transform any legacy database
into any other legacy database. The reason of using flattened XML document as medium is to reduce the number of programs for the
data conversion; otherwise, we need 4 * 4 = 16 programs, instead of the current 4 + 4 = 8 programs to do the data conversion.

Above all, all legacy databases can be transformed into each other via flattened XML documents for data access in the same way as
computers connect to each other via computer network for information retrieval.

References:
1. Shoshani, A., “A Logical-Level Approach to Data Base Conversion”, ACM SGMOD International Conference on

Management of Data, pp.112-122, 1975.
2. V.Y.Lum, N.C. Shu and B.C. Housel, “A General Methodology for Data Conversion and Restructuring”, IBM Journal of

research and development, Volume 20, Issue 5, pp.483-497, 1976.
3. Joseph Fong and Chris Bloor, "Data Conversion Rules from Network to Relational Databases", Information and Software

Technology, Volume. 36 No. 3, pp. 141-154, 1994.
4. Joseph Fong, “Converting Relational to Object-Oriented Databases”, SIGMOD RECORD, Volume 26, Number 1, pp53-58,

1997.
5. Joseph Fong and Herbert Shiu “An interpreter approach for exporting relational data into XML documents with Structured

Export Markup Language’ Journal of Database Management, volume 23, issue 1, 2012.
6. Joseph Fong, Ringo Pang, Anthony Fong, Francis Pang, and Kenny Poon, “Concurrent data materialization for object-

relational database with semantic metadata”, International Journal of Software Engineering and Knowledge Engineering,
Volume 13, Number 3, pp.257-291, 2003.

7. David K. Hsiao, and Magdi N. Kamel, “Heterogeneous Databases: Proliferations, Issues, and Solutions”, IEEE Transactions
on Knowledge and Data Engineering, Voumn 1, Np. 1. Pp.45-62., 1989.

8. Joseph Fong, "The Framework of Data and Transaction Translation in the Distributed Heterogeneous

36

Database Management System: An Extended Entity Relationship Approach", Proceedings of the 10th South East Asia Regional
Computer Confederation Conference, Bali, Indonesia, 4-6 December 1991, Section 47, pp. 1-26.

9. Joseph Fong and Shi-Ming Huang, “Architecture of a Universal Database: A Frame Model Approach”, International Journal
of Cooperative Information Systems, Volume 8, Number. 1, pp. 47-82, 1999.

10. Joseph Fong, Qing Li and Shi-Ming Huang, “Universal Data Warehousing Based on a Meta-Data Modeling Approach”,
International Journal of Cooperative Information Systems, Volume 12, Number 3, pp.325-363, 2003.

11. Len Silverston and Kent Graziano, www.360doc.com/content/08/0830/01/1032_1590731.shtml
12.. Timos Sellis, Chih-Chen Lin, and Louiqa Raschid, “Coupling Production Systems and Database Systems: A Homogeneous

Approach”, IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 5, NO. 2, APRIL 1993
13. Navathe, S. and Awong, A., Abstracting relational and hierarchical data with a semantic data model, Entity-Relationship

Approach, p305-333, (1988).
14. J. E. Funderburk et al., “XTABLES: Bridging Relational Technology and XML”, IBM Systems Journal, Vol 41, No. 4, PP

616 –641, 2002.
15. Derrick Harris, “cloud-databases-101-who-builds-em-and-what-they-do”, GIGAOM, July 2012.
 http://gigaom.com/cloud/cloud-databases-101-who-builds-em-and-what-they-do/
16. Joseph Fong, "Adding Relational Interface to Non-relational Database", IEEE Software, pp. 89-97, 1996.
17. Joseph Fong, Herbert Shiu and Jenny Wong “Methodology for data conversion from XML documents to relations using

Extensible Stylesheet Language Transformation”, International Journal of Software Engineering and Knowledge
Engineering, Volume 19, Number 2, 2009..pp. 249-281

18. MySQL AB:: An Introduction to Database Normalization, http://dev.mysql.com/tech-resources/articles/intro-to-
normalization.html

19. Data Modeling: Refining The Entity-Relationship Diagram,
http://www.utexas.edu/its/windows/database/datamodeling/dm/refining.html

20. Joseph Fong, “Information Systems Reengineering and Integration”, Springer Verlag, ISBN 1-84628-382-5, 370 pages, July
 2006.
21. Joseph Fong, "Methodology for Schema Translation from Hierarchical or Network into Relational", Information and Software

Technology, Volume 34, Number 3, pp. 159-174, 1992.

22. Herbert Shiu and Joseph Fong “Reverse Engineering from an XML Document into an Extended DTD Graph”, Journal of
Database Management, Volume 19, No 4, pp.62-80, 2008.

23. Joseph Fong, "Methodology for Schema Translation from Hierarchical or Network into Relational", Information and Software
 Technology, Volume 34, Number 3, pp. 159-174, 1992. (impact factor: 1.20)

