
2nd Reading

October 8, 2015 13:47 WSPC/S0218-8430 111-IJCIS 1550005

International Journal of Cooperative Information Systems
Vol. 24, No. 4 (2015) 1550005 (29 pages)
c© World Scientific Publishing Company
DOI: 10.1142/S0218843015500057

Designing Redundancy-Free XML Schema:
A Smallest Closure Approach

Wai Yan Mok∗,‡, Joseph Fong†,§ and Kenneth Wong†
∗College of Business Administration
University of Alabama in Huntsville

Huntsville, AL 35899, USA
†Computer Science Department
City University of Hong Kong

Hong Kong, P. R. China
‡mokw@uah.edu

§csjfong@cityu.edu.hk

Received 7 February 2013
Accepted 28 August 2015
Published 12 October 2015

XML has too many low-level details that hinder high-level conceptual design. We there-
fore propose DTD graphs and XSD graphs as a mean for conceptual modeling of XML
applications. Similar to document type definitions (DTDs) and XML schema definitions
(XSDs), DTD graphs and XSD graphs are trees, and as such they can easily be mapped
to DTDs and XSDs for implementation. Unlike DTDs and XSDs, DTD graphs and XSD
graphs capture various high-level data semantics such as cardinality, ISA, participa-
tion, aggregation, categorization, and n-ary relationship. Furthermore, this paper also
presents transformation rules between DTDs and a large class of XML Schemas and an
algorithm that inputs users’ requirements and outputs a DTD graph that has a min-
imum number of redundancy-free fragments. As a result of these good properties, the
resulting DTD or XSD facilitates query processing and update.

Keywords: DTD graphs; XSD graphs; DTDs; XSDs.

1. Introduction

XML data have been freely exchanged over the Internet nowadays. Many exchange
standards exist for different applications. A simple search on the phrase “XML
markup languages” on the Internet will show page after page of XML languages
defined for various industries. For example, eXtensible Business Reporting Lan-
guage (XBRL)a is a global standard for exchanging business information. One
major use of XBRL is to define and exchange financial statements, which require
strict exchange standards. Another example is eXtensible Access Control Markup
Language (XACML).b One of the stated goals of XACML is to promote common

ahttps://www.xbrl.org/.
bhttp://xml.coverpages.org/xacml.html.

1550005-1

2nd Reading

October 8, 2015 13:47 WSPC/S0218-8430 111-IJCIS 1550005

W. Y. Mok, J. Fong & K. Wong

terminology and interoperability between access control implementations by mul-
tiple vendors. Yet another example is the HL7 Clinical Document Architecture
(CDA),c which is a XML-based markup standard intended to specify the encoding,
structure and semantics of clinical documents for exchange. Because of the flexi-
bility of XML, we expect more XML markup languages will be developed and this
trend will continue.

An important first step of the development of any large-scale software requires
understanding and documenting the application at hand. The development of all the
aforementioned XML markup languages is no exception. We believe that conceptual
modeling is able to help develop XML markup languages. As an observation, the
long research history of relational databases demonstrates that conceptual model-
ing of relational databases is an essential step of the development process. Along
the same line of reasoning, an XML conceptual model that facilitates conceptual
modeling of XML applications has become a necessity. It is our belief that DTD
graphs and XSD graphs are able to fill this need. This paper first presents an
overview of the high-level data semantics offered by DTD graphs and XSD graphs.
It then provides transformation rules between DTDs and a large class of XML
Schemas. This class of XML Schemas is important because, like DTDs, it captures
a large collection of real-world cases. After which, we present an algorithm that
inputs users’ requirements and outputs a DTD graph that has a minimum num-
ber of redundancy-free fragments, and prove its correctness. Because the generated
DTD graph has the minimum number of redundancy-free fragments, the number
of reference pointers is also minimum, which means that extracting data across the
fragments can be quickly done.

Figure 1 shows an overview of the proposed XML application design process of
this paper. Users’ requirements of an XML application are first provided as part
of the conceptual modeling step. The result of which is a DTD graph or an XSD
graph, depending upon whether a DTD or an XSD is the desired output. While the
semantics of the application are captured in the DTD graph or the XSD graph, the

Semantics
table

Capture Data
Semantics

Data
Semantics
mapping

DTD

XSD

Users

Data
requirement

Conceptual
schema
Design

DTD Graph

XSD Graph

Fig. 1. An overview of the proposed XML design process.

chttp://www.hl7.org/index.cfm?ref=nav.

1550005-2

2nd Reading

October 8, 2015 13:47 WSPC/S0218-8430 111-IJCIS 1550005

Designing Redundancy-Free XML Schema

(a) (b)

(c) (d)

Fig. 2. Four different XML database designs.

semantics table is an essential data structure that expedites code generation. The
final product is a DTD or an XSD ready to verify XML documents.

As a motivating example for this paper, consider Fig. 2 that shows four different
XML database designs. There are two DTD graphs shown in Figs. 2(a) and 2(b);
one of which has a reference pointer and the other does not. Figures 2(c) and 2(d)
show two similar XSD graphs; one of which has a reference pointer and the other
has not. If the relationship between A elements and B elements is many-to-one,
then all B elements that are associated with an A element can be clustered with
the A element with no redundancy. The implication of which is that retrieving the
B elements of an A element can be quickly done because there is no need to traverse
reference pointers. Thus, Figs. 2(a) and 2(c) illustrate good designs. On the other
hand, if the relationship between A elements and B elements is many-to-many, a B
element may associate with more than one A element and thus the designs shown
in Figs. 2(a) and 2(c) will have redundancy. In this case, Figs. 2(b) and 2(d) show
designs that avoid redundancy, although traversing reference pointers to retrieve
the B elements for a particular A element has become necessary. (As a minor note
of technicality, in the case that the relationship between A elements and B elements
is many-to-many, idref of B in Fig. 2(b) should be read as idrefs to emphasize that
a B element can associate with more than one A element.)

1550005-3

2nd Reading

October 8, 2015 13:47 WSPC/S0218-8430 111-IJCIS 1550005

W. Y. Mok, J. Fong & K. Wong

This paper is different from our previous work10,11 in terms of the inputs and
the outputs of the algorithms. While the inputs of Refs. 10 and 11 are respectively
acyclic hypergraphs and conceptual-model hypergraphs, the inputs for this paper
are a set of object types and a set of data semantics over the object types. The
outputs of this paper are DTD graphs. On the other hand, the outputs of Refs. 10
and 11 are scheme trees.

The remainder of the paper is organized as follows. Section 2 introduces DTD
graphs and XSD graphs. Section 3 provides a set of transformation rules between
DTD graphs and a subclass of XSD graphs. For this subclass of XSD graphs, the set
of transformation rules in Sec. 3 can easily transform a graph of one type to another.
Section 4 presents the main algorithm of the paper, which outputs a DTD graph
that will not lead to redundant data and has a minimum number of fragments from
user’s requirements. The correctness of the algorithm will also be proved there. An
extensive example will be presented in Sec. 5, experiments in Sec. 6, and conclusions
in Sec. 7.

2. Related Work

2.1. DTD graphs

Funderburk et al. introduced DTD graphs in 2002.5,6 In essence, a DTD graph
is a graphical representation of a DTD. Notationally, rectangles in DTD graphs
represent XML elements and circles represent XML attributes. DTD graphs also
employ the usual cardinality operators: “?”, “∗”, “+”, and “|”. A DTD graph is
organized as a tree, in which parent–child relationships are shown explicitly. An
example of DTD graphs now follows.

Figure 3 shows a sample DTD graph. “Patient Record” is the root element of
the DTD graph, and it has a single child element “Patient.” A “Patient” element
has 0 or more “Record Folder” child elements. In turn, a “Record Folder” element
has 0 or more “Medical Record” child elements. A “Medical Record” is either an
“AE Record,” or a “Ward Record,” or an “Outpatient Record.”

2.2. XSD graphs

Fong introduced XSD graphs in Ref. 3, and the formation rules of which can be
found in Refs. 3 and 4. In essence, XSD graphs are able to visualize, specify, and
document structural constraints of XSDs. The resulting graph can be used to rep-
resent the relationships of the elements in an XSD, together with various data
semantic specifications. A brief summary of XSD graphs is provided here, where
the details can be found in Refs. 3 and 4.

Figure 4 shows the XSD graph constructs, each of which is discussed as follows:

(a) Er is an XML element that denotes a binary many-to-many relationship
between two other XML elements.

1550005-4

2nd Reading

October 8, 2015 13:47 WSPC/S0218-8430 111-IJCIS 1550005

Designing Redundancy-Free XML Schema

Fig. 3. A patient record DTD graph.

(a)
Aggregation

(b) Unary -
1

(f) Categorization
(g)
Generalization

(m) Participation - 1

(k) Cardinality - 2

(l) Cardinality - 3

(o) Ternay

(d) Unary - 3

(i) Group

(n) Participation - 2

(h) Element with
attribute

a_name

(e) Isa

(j) Cardinality - 1

(c) Unary -
2

(max=
1)

(max=
n)(a)

Aggregation

Er

C

d/o

Ea

(b) Unary -
1

Ea

Eb

(f) Categorization
(g)
Generalization

(m) Participation - 1

(min= 1)

Ea

Eb

(k) Cardinality - 2

Er

(l) Cardinality - 3

EbEa Ec Er

(o) Ternay

Gabc

(max- m:n:n)

Ea

(d) Unary - 3

Ga

(i) Group

Ea

(n) Participation - 2

(h) Element with
attribute

(p) Group
Reference

(q) Element
Reference

a_name

(r) Path

Ea

Eb

(extension)

(e) Isa

(max= n)

Ea

Eb

(j) Cardinality - 1

(max= 1)

Ea

(c) Unary -
2

(max=
1)

(max=
n)

b

a

locationID

c

locationID

Fig. 4. XSD graph constructs.

1550005-5

2nd Reading

October 8, 2015 13:47 WSPC/S0218-8430 111-IJCIS 1550005

W. Y. Mok, J. Fong & K. Wong

(b) Ea is an XML element that denotes a unary one-to-one relationship from Ea

to itself.
(c) Ea is an XML element that denotes a unary one-to-many relationship from Ea

to itself.
(d) Ea is an XML element that denotes a unary many-to-many relationship from

Ea to itself.
(e) Ea and Eb are XML elements that denote an extension relationship, or an is-a

relationship, in which Eb inherits all properties of Ea.
(f) An XML element tagged with the keyword “choice” is in an is-a relationship

with every XML element pointed at by an arrow emanated from the keyword
“choice.”

(g) “d” or “o” denote disjoint or overlap generalization.
(h) Ea represents an XML element with an attribute declaration.
(i) Ga represents a group declaration.
(j) Eb is a child XML element that is in a one-to-one relationship with its parent

XML element Ea.
(k) Eb is a child XML element that is in a many-to-one relationship with its parent

XML element Ea.
(l) Er is an XML element that refers to two other XML elements that are in a

many-to-many relationship.
(m) With “min = 1”, XML element Eb is in a total participation with its

parent Ea.
(n) Without “min = 1”, XML element Eb is in a partial participation with its

parent Ea.
(o) Er is an XML element that denotes a ternary relationship among the XML

elements Ea, Eb, and Ec.
(p) A broken-line arrow represents a “ref” keyword for a group declaration.
(q) A concrete-line arrow represents a “ref” keyword for an element declaration.
(r) A hierarchy path shows one parent XML element with two child XML elements.

2.3. XML data normalization

Much work has been done in XML normalization.1,7,9,12,13,15,16 Mok and Embley9

proved that generating the fewest redundancy-free XML scheme trees from hyper-
graphs is NP-hard. However, if the universal-relation-scheme assumption8 holds for
a hypergraph H, and if H is Graham-reduction acyclic,8 and if each hyperedge in H
is in BCNF,8 then Mok et al.10 proved that extracting the largest redundancy-free
XML scheme tree from H can be done in polynomial time.

According to the methodology in Ref. 13, functional dependencies and normal
forms for XML can be used to create web-based systems on the Internet. Vincent
et al.13 also proposed a redundancy-free normal form, namely XNF, for XML. They,
however, did not consider data semantics and the whole picture of tree view in their
XML Trees.

1550005-6

2nd Reading

October 8, 2015 13:47 WSPC/S0218-8430 111-IJCIS 1550005

Designing Redundancy-Free XML Schema

Fong et al.4 proposed XSD graphs (derived from XML Tree Model) with data
semantics of cardinality, participation, is-a, generalization, categorization, aggrega-
tion, u-ary and n-ary relationship as XML conceptual schema and provided algo-
rithms that map XSD Graphs to XSDs for implementation.

2.4. Resource description framework

The RDF data model is similar to the classic conceptual modeling approaches such
as entity–relationship or UML class diagrams, as it is based upon the idea of making
statements about resources in the form of subject–predicate–object expressions.
DTD graphs, however, focus on communications with clients and thus graphical
notations seem to be a better choice than subject–predicate–object expressions.
While subject–predicate–object expressions are easier for machines to parse and
understand, they are hard for humans. We believe DTD graphs and XSD graphs
are easier for humans to read and understand.

3. Transformations Between DTD Graphs and a Large Class
of XSD Graphs

It is well known that XSDs are more powerful than DTDs because among many
things, XML Schemas support data types and namespaces that cannot be done in
DTDs.14 However, this section defines a class of XML Schemas, which are equivalent
to DTDs in the sense that each DTD can be transformed to an XSD in this class;
and similarly every XSD in this class can be transformed to a DTD. Like DTDs,
this class of XML Schemas is interesting because it captures a large class of real-
world cases. Most importantly, the smallest closure approach proposed in this paper
applies immediately to this class of XML Schemas. Hence, this paper focuses on
this class of XML Schemas and DTDs.

Figure 5 presents a transformation rule for each basic DTD graph construct
and its corresponding XSD graph construct. The transformation rules are rather
straightforward and thus the proofs of which are omitted. Instead, intuitive

FD: Head → Department

DTD Graph

<!ELEMENT Department (Head)>
 <!ELEMENT Head EMPTY>

DTD

XSD Graph

XSD

<xs:element name="Department">

<xs:element name="Head" minOccurs=”1” maxOccurs=”1”>

</xs:element>

</xs:element>

Department

Head

Department

Head

max=1

(a) One-to-one cardinality between Element Department and Element Head.

Fig. 5. Transformations between DTDs and a large class of XML schemas.

1550005-7

2nd Reading

October 8, 2015 13:47 WSPC/S0218-8430 111-IJCIS 1550005

W. Y. Mok, J. Fong & K. Wong

FD: Instructor → Department

DTD Graph

<!ELEMENT Department (Instructor+)>
 <!ELEMENT Instructor EMPTY>

DTD

XSD Graph

XSD

<xs:element name="Department">

<xs:element name="Instructor" minOccurs=”1” maxOccurs=”unbounded”>

</xs:element>

</xs:element>

Department

Instructor

+

Department

Instructor

max=n

(b) One-to-Many cardinality between Element Department and Element Instructor.

FD: Instructor , Course → Evaluation

DTD Graph

<!ELEMENT Instructor (ARTIFACT*)>
 <!ELEMENT ARTIFACT EMPTY>
 <!ATTLIST ARTIFACT Evaluation CDATA EMPLIED>
 <!ATTLIST ARTIFACT iderf1 IDREF #REQUIRED>
<!ELEMENT Course EMPTY>
 <ATTLIST Course id1 ID #REQUIRED>

DTD

XSD Graph

XSD
<xs:element name="Instructor"> </xs:element>

<xs:element name="Course"> </xs:element>

<xs:element name="R">

<xs:element name="R1" minOccurs=”1” maxOccurs=”unbounded”>

<xs:element ref="Instructor"/>

<xs:element ref="Course"/>

<xs:attribute name=”Evaluation” type=”string”/>
</xs:element>

</xs:element>

Instructor

Artifact

*

Course

idref

id

evaluation

CourseInstructor R

R1

yx

evaluation

(c) Many-to-many cardinality between Element A and Element B with attribute c.

ID: Instructor ⊆ Employee

DTD Graph

FD: Instructor → Employee

<!ELEMENT Employee (Instructor?)>
 <!ELEMENT Instructor EMPTY>

DTD

XSD Graph

XSD

<xs:element name="Instructor" type="b_type"/>
<xs:complexType name="Instructor_type">
 <xs:restriction base="Employee"> </xs:restriction>
</xs:complexType>
<xs:complexType name="Employee"> </xs:complexType>

Employee

Instructor

?

Employee

Instructor
(extension)

(d) Is-a relationship between Element Employee and Element Instructor.

Fig. 5. (Continued)

1550005-8

2nd Reading

October 8, 2015 13:47 WSPC/S0218-8430 111-IJCIS 1550005

Designing Redundancy-Free XML Schema

ID: FullTime ⊆ Instructor

FullTime ∩ PartTime=0

DTD Graph

<!ELEMENT Instructor (FullTime | PartTime)>
 <!ELEMENT FullTime EMPTY>
 <!ELEMENT PartTime EMPTY>

DTD

XSD Graph

XSD
<xs:element name="Instructor">

<xs: choice>
<xs:element ref="FullTime"/>
<xs:element ref="PartTime"/>

</xs:choice>
</xs:element>
<xs:element name="FullTime" type="a_type"/>
xs:complexType name="FullTime_type">

<xs:extension base="Instructor"/>
</xs:complexType>
<xs:element name="PartTime" type="PartTime_type"/>
<xs:complexType name="PartTime_type">

<xs:extension base="Instructor"/>
</xs:complexType>

Instructor

Full
Time

|

Part
Time

Full Time
(extension)

Instructor

Part Time
(extension)

d

ID: PartTime ⊆ Instructor

(e) Disjoint Generalization of subclass Elements FullTime and PartTime under superclass

Element Instructor.

ID: Head ⊆ Employee

Head ∩ Instructor ≠

DTD Graph

XSD

XSD Graph

<xs:element name="Employee">
<xs:element ref="Head"/>
<xs:element ref="Instructor"/>>

</xs:element>
<xs:element name="Head" type="Head_type"/>
<xs:complexType name="Head_type">

<xs:extension base="Employee"/>
</xs:complexType>
<xs:element name="Instructor" type="Instructor_type"/>
<xs:complexType name="Instructor_type">

<xs:extension base="Employee"/>
</xs:complexType>

<!ELEMENT Employee (Head? Instructor?)>
 <!ELEMENT Head EMPTY>
 <!ELEMENT Instructor EMPTY>

DTD

Employee

Head

?

Instructor

?

Head
(extension)

Employee

Instructor
(extension)

o

ID: Instrutor ⊆ Employee

(f) Overlap Generalization of subclass Elements Head and Instructor under superclass Element

Employee.

Fig. 5. (Continued)

1550005-9

2nd Reading

October 8, 2015 13:47 WSPC/S0218-8430 111-IJCIS 1550005

W. Y. Mok, J. Fong & K. Wong

Course ⊆ Lab Χ Lecture

FD: Lab → Course

FD: Lecture → Course

DTD Graph

DTD

<!ELEMENT Course (Lab+, Lecture+)>
 <!ELEMENT Lab EMPTY>
 <!ELEMENT Lecture EMPTY>

XSD

<xs:element name="Lab"> </xs:element>
<xs:element name="Lecture"> </xs:element>
<xs:element name="R">

 <xs:element name="R1" minOccurs="1" maxOccurs="unbounded">

<xs:element ref="Lab"/>
<xs:element ref="Lecture"/>

</xs:element>
</xs:element>
<xs:element name="Course">

<xs:element ref="R" minOccurs="1" maxOccurs="unbounded"/>

</xs:element>

Note stands for aggregation

XSD Graph

Lab Lecture

+

Course

+

R1

LectureLab Course

R

(g) Aggregation of Element Course with component Elements Lab and Lecture.

<!ELEMENT Student (ARTIFACT*)>
 <!ELEMENT ARTIFACT EMPTY>
 <!ATTLIST ARTIFACT idref1 IDREF #REQUIRED>
 <!ATTLIST ARTIFACT idref2 IDREF #REQUIRED>
<!ELEMENT Tutor EMPTY>
<!ATTLIST Tutor id1 ID #REQUIRED>
<!ELEMENT Course EMPTY>
<!ATTLIST Course id2 ID #REQUIRED>

FD: Student ,Tutor, Coruse → R

DTD Graph

DTD

XSD Graph

XSD

<xs:element name="Course"> </xs:element>
<xs:element name="Tutor"> </xs:element>
<xs:element name="Student"> </xs:element>
<xs:element name="R">

<xs:group ref="GroupABC"/>
</xs:element>
<xs:group name="GroupABC">

<xs:element name="group_a" maxOccurs="unbounded">
<xs:element ref="Course"/>
<xs:element name="group_b" maxOccurs="unbounded">

<xs:element ref="Tutor"/>
<xs:element name="group_c" maxOccurs="unbounded">

<xs:element ref="Student"/>
</xs:element>

</xs:element>
</xs:element>

</xs:group>

Note: stands for grouping elements
This group points to elements A, B and C with
maxOccur s=” unbounded" and maxOccurs
=” unbounded" and maxOccurs
=” unbounded” respectively for the current
example.

Course Tutor Student

Artifact

idid

idref

idref

*

R

TutorCourse Student R

Group ABC
(max- m:n:n)

(h) N-any relationship among Elements Course, Tutor and Student with attribute R.

XSD Graph

XSD

<xs:element name="Instructor">
<xs:attribute name="x"/>

</xs:element>
<xs:element name="Department" >

<xs:attribute name="x"/>
</xs:element>
<xs:keyref name="atobRef" refer="atobKey">

<xs:selector xpath="Instructor"/>
<xs:field xpath="@x"/>

</xs:keyref>
<xs:key name="atobKey">

<xs:selector xpath="Department"/>
<xs:field xpath="@x"/>

</xs:key>

FD: Department → Instructor | ⊥

Where ⊥ is null value

DTD Graph

DTD

<!ELEMENT Instructor (Department*)
<!ELEMENT Department EMPTY>

Department Instructor

id idref

Department Instructor

keyrefkey

(i) Partial Participation between Element Department and Element Instructor with null value ⊥.

Fig. 5. (Continued)

1550005-10

2nd Reading

October 8, 2015 13:47 WSPC/S0218-8430 111-IJCIS 1550005

Designing Redundancy-Free XML Schema

DTD Graph XSD Graph

<xs:element name=“Employee”>

<xs:element name=“x” type=“xs:string”/>

<xs:element name=“Rx” type=“Employee” maxOccurs=“1”/>

</xs:element>

<xs:complexType name=“Employee”>

<xs:element name=“x” type=“xs:string”/>

</xs:complexType>

DTD

<!ELEMENT Emplyee EMPTY)
<!ATTLIST Employee id1 ID #REQUIRED>
<!ATTLIST Employee idref1 IDREF #REQUIRED>

FD: Employee1 → Employee2

XSD

Employee
idref

id

Husband

Wife
Employee

max=1

spouse

(j) u-ary relationship for element Employee.

DTD Graph

Tutor Lecturer

Tutor Professor

XSD Graph

XSD

<xs:element name="Tutor">
<xs:choice>

<xs:group ref="Lecturer"/>
<xs:group ref="Professor"/>

</xs:choice>

DTD

<!ELEMENT Tutor EMPTY)
<!ATTLIST Tutor idref1 IDREF
#REQUIRED>
<!ELEMENT Professor EMPTY>
<!ATTLIST Professor id1 ID #REQUIRED>
<!ELEMENT Lecturer EMPTY>
<!ATTLIST Lecturer id2 ID #REQUIRED>

= conditional

Lecturer Professor Tutoridid

idref

|

TutorLecturer Professor

C

Note: stands for the categorizationC

x

</xs:element>

(k) Categorization of Elements Lecturer and Professor to Element Tutor.

Fig. 5. (Continued)

examples are provided instead to demonstrate the transformations. Since there is a
one-to-one correspondence between this class of XML Schemas and DTDs, from this
point on this paper focuses on DTD graphs. Note that the DTD graph constructs
in Fig. 5 will be further used in the proof of correctness of the main algorithm of
the paper.

4. An XML Schema Generation Algorithm

This section first presents the definitions of basic concepts and assumptions. After
which, the main algorithm of the paper and the proof of its correctness will be
given.

Definition 1. A fragment in a DTD graph is a child element of the root element
of the DTD graph.

For this paper, all real-world object types have a corresponding XML element
definition. Let O be an object type and E be its corresponding XML element defini-
tion. Attributes of O are the only attributes of E. Each instance of O is represented
by at least one instance of E in an XML document. In addition, each object type O

1550005-11

2nd Reading

October 8, 2015 13:47 WSPC/S0218-8430 111-IJCIS 1550005

W. Y. Mok, J. Fong & K. Wong

must have a special attribute, called Oid, which is an identifier for O. Each instance
of O must have a unique value over Oid.

Definition 2. A data value v of an XML document D is redundant if there is no
loss of information in D if v was removed from D.

In terms of functional dependencies (FDs), the following definition provides the
details on how redundant data values were caused by FDs.

Definition 3. An attribute value v over an attribute A in an XML document D
is redundant with respect to an FD X → A if there are two distinct XML element
instances I1 and I2 in D such that I1(XA) = I2(XA). Then, either one of the two
values I1(A) or I2(A), but not both, is redundant.

XML element instances and object instances are two different concepts and
must not be misunderstood that they are equivalent. Regardless of its contents,
every XML element instance is unique because it is identified by a unique XPath
expression pointing at its location in a XML document. Although two or more XML
element instances may represent the same object instance, they are all distinct.

Example 1. For the XML document in Fig. 6, student John with the Oid s01 is
a member of both chess club and drama club. Therefore, his data are stored in two
different XML element instances. Note that his Oid is stored in both STUDENT
element instances. To emphasize that the two STUDENT element instances are
different, we add an attribute Eid of type ID to the STUDENT element definition.

<?xml version="1.0"?>
<!DOCTYPE CLUB [
<!ELEMENT CLUB (CHESSCLUB, DRAMACLUB)>
<!ELEMENT CHESSCLUB (STUDENT*)>
<!ELEMENT DRAMACLUB (STUDENT*)>
<!ELEMENT STUDENT (#PCDATA)>
<!ATTLIST STUDENT EID ID #REQUIRED>
<!ATTLIST STUDENT OID CDATA #REQUIRED>
<!ATTLIST STUDENT ADDRESS CDATA #REQUIRED>
]>
<CLUB>
<CHESSCLUB>
<STUDENT EID="e01" OID="s01" ADDRESS="201 Oak st.">
John

</STUDENT>
</CHESSCLUB>
<DRAMACLUB>
<STUDENT EID="e02" OID="s01" ADDRESS="201 Oak st.">
John

</STUDENT>
</DRAMACLUB>

</CLUB>

Fig. 6. An XML document with data redundancy.

1550005-12

2nd Reading

October 8, 2015 13:47 WSPC/S0218-8430 111-IJCIS 1550005

Designing Redundancy-Free XML Schema

Each STUDENT element instance must have a unique value for Eid; otherwise, the
XML document is invalid.

Note that FDs naturally arise because of object identifiers. Let O be an object
type and Oid, A1, A2, . . . , An be its attributes where Oid is the object identifier
of O. By the nature of object identifiers, every object type O gives rise to an FD
Oid → A1A2 . . . An.

Example 2. There are redundant attribute values in the XML document in Fig. 6
caused by the FD Oid → Address. Since both STUDENT element instances have
the same Oid value, they represent the same object instance and thus the student’s
address is stored twice. Hence, one of the two ADDRESS values is redundant with
respect to the FD Oid → Address.

Lemma 1. Let O be an object type and E be its corresponding XML element defi-
nition. Let Oid, A1, A2, . . . , An be the attributes of O. Let D be an XML document.
D has redundant data values with respect to Oid → Ai if and only if there are two
distinct instances I1 and I2 of E that represent the same instance o of O and they
have at least two common attributes and one of which is Oid.

Proof. Suppose D has redundant data values with respect to Oid → Ai. By Def-
inition 3, there are two element instances I1 and I2 in D such that both I1 and
I2 have the same values over the attributes Oid and Ai. Since I1 and I2 have the
same value of Oid, they represent the same instance o of object type O. Since E
is O’s corresponding XML element definition, I1 and I2 are instances of E. Since
I1(Oid) = I2(Oid) = o, thus I1(Ai) = I2(Ai) by the FD Oid → Ai. This means that
one of the values I1(Ai) and I2(Ai), but not both, is redundant. On the other hand,
if there are two distinct instances I1 and I2 of E that represent the same instance o
of O and they have at least two common attributes and one of which is Oid, then I1
and I2 satisfy the FD Oid → Ai where Ai is the other attribute that I1 and I2 have
in common. By Definition 3 again, D has redundant attribute value with respect
to Oid → Ai.

In this paper, we assume the set S of attributes of every object type, or its
corresponding XML element definition, is in BCNF (Boyce–Codd normal form).8

This assumption is reasonable because most object types have very few attributes.
If, however, an object type O is not in BCNF, it can always be decomposed into
multiple BCNF object types. Hence, we can safely make this assumption.

Example 3. There are two FDs and four attributes in Fig. 7. The left-hand sides
of the FDs are Sid and Address Name, which are both keys for the attributes
of the XML element definition STUDENT. Hence, the XML element definition
STUDENT is in BCNF and thus the DTD graph of Fig. 7 is in BCNF.

Example 4. There is an FD Home → HomePhone in Fig. 8(a) over the attributes
of the XML element definition STUDENT. Since Home is not a key, the DTD

1550005-13

2nd Reading

October 8, 2015 13:47 WSPC/S0218-8430 111-IJCIS 1550005

W. Y. Mok, J. Fong & K. Wong

Student

Sid

Address

Name

Functional Dependencies;

FD Sid → Address, Name, Age

FD Address. Name → Sid, Age

DTD Graph

Age

Fig. 7. A BCNF DTD.

Student

Sid

Home

Home Phone

XML Document

<Student
Sid = “S01”
Home = “RM 111”
Home_Phone = “25111222”

/Student>
<Student

Sid = “S02”
Home = “RM 111”
Home_Phone = “25111222”

/Student>

DTD Graph

(a)

Address

Home

Home Phone

XML Document

<Address
Home = “RM 111”
Home_Phone = “25111222”>
<Student

Sid = “S01”/>
<Student

Sid = “S02”/>
</Address>

DTD Graph

Student

Sid

(b)

Fig. 8. (a) Non-BCNF DTD and (b) BCNF DTD.

graph in Fig. 8(a) is not in BCNF. (It is possible that more than one student
resides in the same home.) However, the XML element definition STUDENT can
be easily decomposed into two BCNF XML element definitions, which are shown
in Fig. 8(b). Now, the FD Home → HomePhone only applies to the XML element
definition ADDRESS, and Home is a key of the attributes of ADDRESS. Thus,
both XML element definitions ADDRESS and STUDENT are in BCNF.

Lemma 2. Let O be a BCNF object type and E be its corresponding XML element
definition. Let Oid, A1, A2, . . . , An be the attributes of O. Let D be an XML docu-
ment. D has redundant data values with respect to a non-trivial FD X → Ai where
XAi ⊆ OidA1A2 . . . An if and only if D has redundant data values with respect to
Oid → Ai.

1550005-14

2nd Reading

October 8, 2015 13:47 WSPC/S0218-8430 111-IJCIS 1550005

Designing Redundancy-Free XML Schema

Proof. Since O is in BCNF and X → Ai is non-trivial, X is another key of O. Hence,
X → Oid. Thus, the proof of this lemma is similar to that for Lemma 1.

We now present Algorithm 1, the main algorithm of the paper.

Algorithm 1. An algorithm that outputs a DTD graph using the smallest closure
approach.

Input: A set S of XML elements that represent a collection of real-world BCNF
object types, and a set of data semantics over the elements in S.
Output: A DTD graph G (G has only the root element before Algorithm 1 is
executed.).

Step 1. Extract FDs from the input, but discard all FDs of the form X o → Y
where the symbol o → denotes that some instances of X might not participate in
the FD with the instances of Y; i.e. there might be some X instances that do not
have associated Y instances.d

Step 2. Generate functional closures for all XML elements in S using the FDs
extracted in Step 1.

Step 3. Repeat until all XML elements in S have been added to G.
Move each remaining smallest XML element in S to G. (An XML element A is

smallest if there is no other XML element B in S such that B+ ⊂ A+.) However, if
there are smallest XML elements A1, A2, . . . , An such that A+

1 = A+
2 = · · · = A+

n ,
then move all of them A1, A2, . . . , An to G. After which, make A1 a child element
of an XML element which was added in the last iteration.

Add the input data semantics of the XML elements to G.

Step 4. For every XML element A that is a child of more than one XML element
in G, replace all but one occurrence of A by another XML element Aref that only
contains a reference pointer idref that refers to the id of A; i.e. Aref simply acts as
a pointer pointing to A in G.

Theorem 1. Algorithm 1 generates a redundancy-free DTD graph from the input
semantic metadata.

Proof. Let H be the input semantic metadata and G be the output DTD graph.
We need to show that for any XML document D of G, D is free of redundant
attribute values. Let O be a BCNF object type and E be its corresponding XML

dThe symbol X o → Y means that the instances of X optionally associate with the instances of Y
in the FD. In other words, there might be instances of X that do not associate with any instances
of Y in the FD. The example in Part k of Fig. 5 illustrates that Tutor o → Lecturer and Tutor
o → Professor. This means that a tutor is either a lecturer or a professor, but there might also
be a tutor who is neither a professor nor a lecturer. On the other hand, if Tutor → Lecturer and
Tutor → Professor, then every tutor participates in the FD, which means every tutor must be a
lecturer or a professor.

1550005-15

2nd Reading

October 8, 2015 13:47 WSPC/S0218-8430 111-IJCIS 1550005

W. Y. Mok, J. Fong & K. Wong

element definition. Let Oid, A1, A2, . . . , An be the attributes of O. By Lemma 2,
D has redundant data values with respect to a non-trivial FD X → Ai where
XAi ⊆ OidA1A2 . . .An if and only if D has redundant data values with respect to
Oid → Ai. Hence, it is sufficient to focus on the FDs that have Oid as the left-
hand sides. By Lemma 1, D has redundant data values with respect to Oid → Ai if
and only if there are two distinct instances I1 and I2 of E that represent the same
instance o of O and they have at least two common attributes and one of which
is Oid. Therefore, we shall prove by induction on the number n of iterations of
the repeat loop in Algorithm 1 that there are not two distinct element instances
that represent the same object instance. As a result, D has no redundant attribute
values. When n = 0, G has only the root XML element. Hence, any XML document
over G can only have a single XML element instance, which means it cannot have
any redundancy. Assume Algorithm 1 generates redundancy-free DTD graphs if
the number of iterations of the repeat-loop in Algorithm 1 is less than or equal
to an integer k where k ≥ 0. Now consider the repeat loop executes the (k + 1)th
iteration. At the (k + 1)th iteration, Algorithm 1 selects the remaining smallest
XML elements in S. Let A be a selected XML element. If k > 0, there is an XML
element B such that A becomes a child element of B and B was added to G in the
kth iteration and B+ ⊃ A+ (or equivalently, A → B.) If k = 0, then A = A+. If
k > 0, by the induction hypothesis there are not two distinct B element instances
that represent the same object instance. Since A → B, as a result there are not two
distinct A element instances that represent the same object instance. If k = 0, A
becomes a child element of the root element. As a result there are not two distinct
A element instances that represent the same object instance. The induction step is
now complete.

Theorem 2. Algorithm 1 generates a minimum number of fragments.

Proof. Let H be the input semantic metadata and G be the output DTD graph.
By Definition 1, we need to prove that the root element has the minimum possible
number of children. Otherwise, we will have data redundancy or missing informa-
tion. At the beginning, Algorithm 1 adds every XML element with the smallest
closure as a child of the root element. For any two distinct smallest XML elements
EA and EB, if EA � EB, EA cannot be a child of EB. On the other hand, if EA → EB

but the FD is optional on the tail side, EA cannot be a child of EB either. Since
EA is optional in the FD, there may be some EA object instances not related to
any EB instances. As a result, those EA object instances that do not participate in
the FD cannot be represented by any EA element instances because they do not
have parents. The argument that EB cannot be a child of EA is similar. Hence,
both EA and EB must be children of the root element. For the special case that if
two smallest elements EA and EB such that E+

A = E+
B , the algorithm adds one of

the two, say EA, as a child of the root element. EB will become a child of EA later.
All other elements in S can be added as a child element of other XML elements

1550005-16

2nd Reading

October 8, 2015 13:47 WSPC/S0218-8430 111-IJCIS 1550005

Designing Redundancy-Free XML Schema

other than the root element of G. Hence, Algorithm 1 will not add anymore
fragment to G.

Theorem 3. Algorithm 1 runs in polynomial time.

Proof. After extracting the FDs from the users’ requirements, generating the func-
tional closure for an object type takes linear time in terms of the number of FDs.8

Given n ≥ 1 input object types, the number of extracted FDs are bounded by
n(n − 1)/2. Thus, generating the functional closure for an object type takes at
worst n2 time. As a result, generating n functional closures for n input object types
is thus bounded by n3 time. The rest of the algorithm consists of comparing n func-
tional closures and building the output DTD graph. At most n(n−1)/2 comparisons
are needed for the n functional closures and each comparison at worst requires scan-
ning n object types. Thus, comparing the n functional closures at worst takes n3

time. Building the output DTD graph clearly needs less than n3 time. Thus, the
greatest factor is n3, which implies Algorithm 1 runs in polynomial time.

5. An Extensive Example

This section presents an extensive example. The input object types and their rela-
tionships are shown as follows:

(a) An employee may be a spouse of another employee (a unary and a one-to-one
relationship: Employee o → Spousee and Spouse → Employee).

(b) A tutor may help more than one student for more than one course (a ternary
relationship).

(c) A tutor can be a lecturer or a professor or something else (Tutor o → Lecturer
and Tutor o → Professor).

(d) A department has only one department head and a department head can only
chair one department (a one-to-one relationship: Head → Department and
Department → Head). A department head is an employee, but an employee
may not be a department head (Head → Employee).

(e) An instructor is an employee but an employee may not be an instructor (Instruc-
tor → Employee).

(f) An instructor must belong to a department (a many-to-one relationship:
Instructor → Department).

(g) An instructor can either be full-time or part-time (FullTime → Instructor and
PartTime → Instructor).

(h) An instructor can teach many courses and a course can be taught by many
instructors (a many-to-many relationship).

(i) A full-time instructor has a retirement plan (a many-to-one relationship:
FullTime → RetirementPlan).

eThere may be some employees who do not have spouses.

1550005-17

2nd Reading

October 8, 2015 13:47 WSPC/S0218-8430 111-IJCIS 1550005

W. Y. Mok, J. Fong & K. Wong

Fig. 9. A “bad” DTD-graph that has too many fragments.

(j) A part-time instructor has an hourly rate (a many-to-one relationship: Part-
Time → HourlyRate).

(k) A course consists of lectures and laboratories (two many-to-one relationships:
Lecture → Course and Laboratory → Course).

A “bad” design that has too many fragments is shown in Fig. 9. Particularly,
the DTD graph in Fig. 9 does not take advantage of the relationship between the
object types Instructor and Employee, which yields the FD Instructor → Employee.
Because of this FD, Instructor can be nested as a child XML element of Employee,
which would result in one less fragment. On the other hand, Algorithm 1 recognizes
this FD and will make Instructor a child element of Employee. We now trace through
Algorithm 1. By the extracted FDs, we generate the following functional closures
of the XML elements:

Student+ = Student,
Tutor+ = Tutor,
Lecturer+ = Lecturer,
Professor+ = Professor,
RetirementPlan+ = RetirementPlan,
HourlyRate+ = HourlyRate,
Course+ = Course,
Employee+ = Employee,

Instructor+ = Instructor Employee Department,
Head+ = Head Department Employee,
Department+ = Department Head Employee,
Lab+ = Lab Course,
Lecture+ = Lecture Course,

1550005-18

2nd Reading

October 8, 2015 13:47 WSPC/S0218-8430 111-IJCIS 1550005

Designing Redundancy-Free XML Schema

FullTime+ = FullTime RetirementPlan ∪ Instructor+,
PartTime+ = PartTime HourlyRate ∪ Instructor+.

In the first pass of the repeat loop of Algorithm 1, the smallest XML elements are
those that are equal to their functional closures. They are Student, Tutor, Lecturer,
Professor, RetirementPlan, HourlyRate, Course, and Employee. They then become
child XML elements of the root element. Algorithm 1 also adds the input data
semantics of these XML elements to the graph. The resulting DTD graph is shown
in Fig. 10. For the FD Spouse → Employee, Spouse is a role of the object type
Employee. As such, it is better to model Spouse as an optional attribute that
references the id field of the Employee XML element definition. It is obvious that
if an employee does not have a spouse, the XML element instance that represents
the employee does not have this optional attribute.

In the second pass of the repeat loop of Algorithm 1, the algorithm moves the
remaining smallest XML elements in S to G. They are Instructor, Head, Depart-
ment, Lab and Lecture. Since Employee ∈ Instructor+, Instructor becomes a child
XML element of Employee. Since Head+ = Department+, Algorithm 1 adds both
Head and Department to G. After which, the algorithm makes Head a child XML
element of Employee since Employee ∈ Head+. Since Lab+ = Lab Course and
Lecture+ = Lecture Course, both Lab and Lecture become child XML elements of
Course. Afterwards, the input data semantics of these XML elements are added to
the graph. The resulting DTD graph is shown in Fig. 11.

In the third pass of the repeat loop of Algorithm 1, the algorithm moves the
remaining smallest XML elements in S to G. They are FullTime and PartTime.
Since Instructor ∈ FullTime+ and Instructor ∈ PartTime+, FullTime and PartTime
become child XML elements of Instructor, as shown in Fig. 12. The input data
semantics of these XML elements are added to the graph as well.

Note that the DTD graph in Fig. 12 takes advantage of the extracted FDs.
Therefore, it does not have extra fragments. The number of fragments cannot be

Fig. 10. The resulting DTD graph after the first pass of the repeat loop of Algorithm 1.

1550005-19

2nd Reading

October 8, 2015 13:47 WSPC/S0218-8430 111-IJCIS 1550005

W. Y. Mok, J. Fong & K. Wong

Fig. 11. The resulting DTD graph after the second pass of the repeat loop of Algorithm 1.

Fig. 12. The resulting DTD graph after the third pass of the repeat loop of Algorithm 1.

1550005-20

2nd Reading

October 8, 2015 13:47 WSPC/S0218-8430 111-IJCIS 1550005

Designing Redundancy-Free XML Schema

further reduced without introducing redundant data values or missing information.
Thus, the DTD graph in Fig. 12 is a superior design to that in Fig. 9.

6. Performance Analysis

This section presents experimental data to substantiate our claim that the small-
est closure approach indeed generates XML schemes that will reduce access time.
Specifically, we generated XML files in accordance with the DTD graphs in Figs. 9
and 12 and executed two Microsoft LINQ queries in C#. Two sample XML files are
shown in Figs. 13 and 14, respectively. As a comparison, an XML file with redun-
dant RetirementPlan elements is also shown in Fig. 15. To facilitate the queries,
we added an attribute “MartialStatus” to the XML element Employee, which is a
common attribute of the object type Employee.

<?xml version='1.0' encoding='UTF-8'?>
<!DOCTYPE Teaching SYSTEM 'figure9.dtd'>
<Teaching>
<Employee EID='E1' MaritalStatus='S'></Employee>
<Employee EID='E2' MaritalStatus='M'></Employee>

...................
<Course CID='C1'>
<Lab>SAP Lab</Lab>
<Lecture>Intro to SAP</Lecture>

</Course>
...................
<PartTime PID='P1'>
<HourlyRate HID='H1'>$13.47</HourlyRate>

</PartTime>
...................
<FullTime FID='F1'>
<RetirementPlan RID='R1'>Retirement age = 65, TIAA-CREF</RetirementPlan>

</FullTime>
...................
<Instructor IID='E1'>
<PartTimeEmployment PID='P2'/>
<CourseTaught CID='C9'/>

</Instructor>
<Instructor IID='E2'>
<FullTimeEmployment FID='F3'/>
<CourseTaught CID='C1'/>
<CourseTaught CID='C3'/>

</Instructor>
...................
</Teaching>

Fig. 13. An XML document that complies with the DTD graph in Fig. 9.

1550005-21

2nd Reading

October 8, 2015 13:47 WSPC/S0218-8430 111-IJCIS 1550005

W. Y. Mok, J. Fong & K. Wong

<?xml version='1.0' encoding='UTF-8'?>
<!DOCTYPE Teaching SYSTEM 'figure12.dtd'>
<Teaching>
<Employee EID='E1' MaritalStatus='S'>
<Instructor>
<PartTime PID='H2'/>
<CourseTaught CID='C8'/>

</Instructor>
</Employee>
<Employee EID='E2' MaritalStatus='M'>
<Instructor>
<FullTime FID='R3'/>

</Instructor>
</Employee>

...................
<Course CID='C1'>
<Lab>SAP Lab</Lab>
<Lecture>Intro to SAP</Lecture>

</Course>
...................
<RetirementPlan RID='R1'>Retirement age = 65, TIAA-CREF</RetirementPlan>

...................
<HourlyRate HID='H1'>$13.47</HourlyRate>

...................
<Teaching>

Fig. 14. An XML document that complies with the DTD graph in Fig. 12.

<?xml version='1.0' encoding='UTF-8'?>
<!DOCTYPE Teaching SYSTEM 'figureRedundancy.dtd'>
<Teaching>
<Employee EID='E1' MaritalStatus='S'>
<Instructor>
<PartTime PID='H2'/>
<CourseTaught CID='C5'/>

</Instructor>
</Employee>
<Employee EID='E2' MaritalStatus='M'>
<Instructor>
<FullTime>
<RetirementPlan>Retirement age = 59, Fidelity Investments</RetirementPlan>

</FullTime>
</Instructor>

</Employee>
...................
<Employee EID='E5' MaritalStatus='M'>
<Instructor>
<FullTime>
<RetirementPlan>Retirement age = 59, Fidelity Investments</RetirementPlan>

</FullTime>
<CourseTaught CID='C1'/>
<CourseTaught CID='C2'/>
<CourseTaught CID='C8'/>

</Instructor>
</Employee>

Fig. 15. An XML document that has redundant RetirementPlan elements.

1550005-22

2nd Reading

October 8, 2015 13:47 WSPC/S0218-8430 111-IJCIS 1550005

Designing Redundancy-Free XML Schema

...................
<Course CID='C1'>
<Lab>SAP Lab</Lab>
<Lecture>Intro to SAP</Lecture>

</Course>
...................
<HourlyRate HID='H1'>$13.47</HourlyRate>

...................
</Teaching>

Fig. 15. (Continued)

The Microsoft LINQ queries used in the experiments are shown in the following
tables:

Query 1: Find the retirement plan of every unmarried full-time instructor.
Fig. 9 var result = new XElement("results",

 from e in fig9.Element("Teaching").Elements("Employee")
 where (string)e.Attribute("MaritalStatus").Value == "S"
 from i in fig9.Element("Teaching").Elements("Instructor")
 where (string)i.Attribute("IID").Value ==
(string)e.Attribute("EID").Value
 from r in i.Elements("FullTimeEmployment")
 from f in fig9.Element("Teaching").Elements("FullTime")
 where (string)f.Attribute("FID").Value ==
(string)r.Attribute("FID")
 select new XElement("SelectedEmployee",
 new XAttribute("EID", (string)e.Attribute("EID").Value),
 f.Descendants("RetirementPlan")));

Fig. 12 var result = new XElement("results",
 from e in fig12.Element("Teaching").Elements("Employee")
 where (string)e.Attribute("MaritalStatus").Value == "S"
 from f in e.Elements("Instructor").Elements("FullTime")
 from r in fig12.Element("Teaching").Elements("RetirementPlan")
 where (string)f.Attribute("FID").Value ==
(string)r.Attribute("RID").Value
 select new XElement("SelectedEmployee",
 new XAttribute("EID", (string)e.Attribute("EID").Value),
 r));

A DTD that
has
Redundant
Retirement
Plan
Elements

var result = new XElement("results",
 from e in figRedundancy.Element("Teaching").Elements("Employee")
 where (string)e.Attribute("MaritalStatus").Value == "S"
 from r in
e.Elements("Instructor").Elements("FullTime").Elements("RetirementPlan")
 select new XElement("SelectedEmployee",
 new XAttribute("EID", (string)e.Attribute("EID").Value),
 r));

Query 2: Find the retirement plan of every full-time instructor.
Fig. 9 var result = new XElement("results",

 from i in fig9.Element("Teaching").Elements("Instructor")
 from r in i.Elements("FullTimeEmployment")
 from f in fig9.Element("Teaching").Elements("FullTime")
 where (string)f.Attribute("FID").Value ==
(string)r.Attribute("FID")
 select new XElement("SelectedEmployee",
 new XAttribute("IID", (string)i.Attribute("IID").Value),
 f.Descendants("RetirementPlan")));

Fig. 12 var result = new XElement("results",
 from f in
fig12.Element("Teaching").Elements("Employee").Elements("Instructor").Elements("FullT
ime")
 from r in fig12.Element("Teaching").Elements("RetirementPlan")
 where (string)f.Attribute("FID").Value ==
(string)r.Attribute("RID").Value
 from e in f.Ancestors("Employee")
 select new XElement("SelectedEmployee",
 new XAttribute("EID", (string)e.Attribute("EID").Value),
 r));

1550005-23

2nd Reading

October 8, 2015 13:47 WSPC/S0218-8430 111-IJCIS 1550005

W. Y. Mok, J. Fong & K. Wong

A DTD that
has
Redundant
Retirement
Plan
Elements

var result = new XElement("results",
 from r in
figRedudnancy.Element("Teaching").Elements("Employee").Elements("Instructor").Element
s("FullTime").Elements("RetirementPlan")
 from e in r.Ancestors("Employee")
 select new XElement("SelectedEmployee",
 new XAttribute("EID", (string)e.Attribute("EID").Value),
 r));

The queries were executed on a Windows 8.1 64-bit desktop computer that
has an AMD A6-3650 CPU with a RadeonTM HD Graphics processor and 8GB
memory. In all the XML files used in the experiments, the number of Employee
elements exceeded the number of Instructor elements, simulating the fact that
there are employees who are not instructors. In addition, all XML files used in the
experiments have ten Course elements, five HourlyRate elements, and three Retire-
mentPlan elements. Each Instructor element is randomly assigned 0 to 4 Course
elements, simulating that each instructor may teach up to 4 courses. Further, every
part-time Instructor element is followed by nine full-time Instructor elements and
every unmarried Employee element is followed by six married Employee elements.
We executed the queries with 200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800,
and 2000 Instructor elements. The execution time of each query was measured in
terms of ticks, the smallest unit of time that the C# Stopwatch timer can mea-
sure. For each LINQ query of a DTD and for each number of Instructor elements,
we executed the query 53 times, discarded the first three executions, and averaged
the results of the last fifty executions. We noted that the first several executions
took much longer than the other executions. Therefore, we discarded the first three
“warm-up” executions and averaged the last fifty executions. The execution times
measured in ticks are shown in Table 1.

Figures 16 and 17 plot the execution times of Queries 1 and 2 against the number
of Instructor elements.

It is expected that LINQ will spend more time to execute Query 1 on XML files
that comply with the DTD graph in Fig. 9. From the LINQ code we can see that
the unmarried Employee elements are first selected. Then, LINQ selects the match-
ing Instructor elements. LINQ then selects the unmarried Instructor elements that

Table 1. Execution times of the LINQ queries.

Query 1 Query 2
Num. of
Instr.

Elements
Fig. 9 Fig. 12 With Fig. 9 Fig. 12 With

Redundancy Redundancy

200 36587.32 3311.56 1368.64 23958.62 16039.38 3771.46
400 131540.22 8999.2 2568.58 77312.2 49351.54 7749.14
600 288776.18 16721.74 4668.86 164508.12 99925.14 11294.64
800 513848.44 26713.54 5254.34 263681.74 164371.62 14691.46
1000 795169.48 38973.06 6335.14 398863.78 250284.58 17391.22
1200 1167544.14 54981.5 8028.02 564378.5 350924.98 22728.86
1400 1523601.94 71058.12 8976.38 761585.3 459157.86 24131.24
1600 2004435.86 91389.62 11907.42 948968.58 591074.54 27669.04
1800 2481122 111971.86 13929.16 1212540.84 734541.92 30704.94
2000 3084158.7 137819.64 14438.2 1475694.64 901096.28 34677.16

1550005-24

2nd Reading

October 8, 2015 13:47 WSPC/S0218-8430 111-IJCIS 1550005

Designing Redundancy-Free XML Schema

Fig. 16. Execution time of Query 1 against the number of Instructor elements.

have FullTimeEmployment child elements. It then selects the matching FullTime
elements. Finally, it selects the RetirementPlan child elements of the matched Full-
Time elements. For the XML files that comply with the DTD graph in Fig. 12, LINQ
again selects the unmarried Employee elements first. However, because Instructor
elements are nested within Employee elements, LINQ does not need to go to another
fragment to find the matching Instructor elements. For each unmarried Instructor
element, LINQ next selects the RetirementPlan ID of the FullTime element nested
within the Instructor element. Finally, LINQ finds the matching RetirementPlan
element. For the XML files that have redundant RetirementPlan elements, LINQ
first needs to select the unmarried Employee elements. Then, no matching needs
to be done because the RetirementPlan elements are nested within the unmarried
FullTime elements.

Query 2 is similar to Query 1, but it requires one less matching. For the XML
files that comply with the DTD graph of Fig. 9, LINQ first goes from the Teach-
ing element, then each Instructor element, then the FullTimeEmployment element
within the Instructor element, and then LINQ goes from the Teaching element, then
the matching FullTime element and its RetirementPlan child element. The number
of elements traversed for each instructor is thus 3 + 3 = 6. For the XML files that
comply with the DTD graph of Fig. 12, LINQ first goes from the Teaching element,

1550005-25

2nd Reading

October 8, 2015 13:47 WSPC/S0218-8430 111-IJCIS 1550005

W. Y. Mok, J. Fong & K. Wong

Fig. 17. Execution time of Query 2 against the number of Instructor elements.

then each Instructor element, then its FullTime element, and then LINQ goes from
the Teaching element, and to the matching RetirementPlan element. The number
of elements traversed for each instructor is thus 4 + 2 = 6. Although the number
of elements traversed for each instructor is the same in both cases, as far as Query
2 is concerned the XML files that comply with the DTD graph of Fig. 12 still out-
performs than those that comply with the DTD graph of Fig. 9. With redundant
RetirementPlan elements, the number of elements traversed for each instructor is
only 5.

Because LINQ does not traverse a fragment that consists of RetirementPlan
elements, redundant RetirementPlan elements speed up Queries 1 and 2. However,
the price for fast access is that the size of the XML file also increases. Measured
in bytes, Table 2 presents the size of the XML file used in the experiments. Using
the data in Table 2, Fig. 18 plots the size of the XML file against the number of
Instructor elements, which shows that the size of the XML file increases linearly
with the number of Instructor elements.

Although storage cost has dropped to almost zero today, response time is still a
critical matter. In our experiments, the LINQ queries retrieve RetirementPlan ele-
ments. Therefore, redundant RetirementPlan elements readily speed up the queries.
In fact, it is well known that if the access pattern of the user is known beforehand

1550005-26

2nd Reading

October 8, 2015 13:47 WSPC/S0218-8430 111-IJCIS 1550005

Designing Redundancy-Free XML Schema

Table 2. XML file size (in bytes) against the number of Instructor elements.

Num. of Instr. Elements Fig. 9 Fig. 12 With Redundancy

200 34918 30715 44249
400 68144 60591 87306
600 103052 89133 129846
800 135707 118391 173052

1000 168663 146444 212982
1200 202557 175632 256988
1400 236461 203351 298445
1600 266856 233424 344776
1800 301648 262250 382765
2000 334587 293264 427354

Fig. 18. XML file size (in bytes) against the number of Instructor elements.

and update on redundant data is relatively few, redundancy can improve access
time. However, if the access pattern of the data is unknown and update on redun-
dant data is frequent, redundancy may increase response time. Therefore, whether
or not redundancy will improve access time depends on the actual access pattern
and the frequency of the update on the redundant data. On the other hand, the
smallest closure approach of this paper does not depend on the access pattern of
the data. It relies on the relationships of the input object types. The output of
our approach has the minimum number of fragments and the complying XML files

1550005-27

2nd Reading

October 8, 2015 13:47 WSPC/S0218-8430 111-IJCIS 1550005

W. Y. Mok, J. Fong & K. Wong

do not have redundant data. In fact, traversing the extra fragments significantly
increases access time, as shown in Fig. 16.

Conversely, given the data semantics of Sec. 5, our algorithm will correct the
redundancy problem of the XML file in Fig. 15. The main reason is that the func-
tional closure of RetirementPlan is equal to itself, i.e. RetirementPlan+ = Retire-
mentPlan. Because its functional closure is equal to itself, RetirementPlan will
become a child element of the root element. Hence, the smallest closure approach
of this paper will not generate a DTD that allows the XML file in Fig. 15. In fact,
the smallest closure approach of this paper will generate the DTD graph of Fig. 12,
and its complying XML files are the smallest in our experiments.

To close this section, we note that (i) DTDs with unnecessary fragments will
make complying XML files to have long access time, especially if queries need to
traverse unnecessary fragments to retrieve data, and (ii) using redundant Retire-
mentPlan elements to speed up queries comes with a price. If the access pattern of
the data is unknown and update on redundant data is frequent, redundant Retire-
mentPlan elements may actually slow down response time. In fact, using redundant
data to speed up queries is very application specific.

7. Conclusion

This paper proposed the use DTD graphs and XSD graphs as a mean for conceptual
modeling of XML applications. Because DTD graphs and XSD graphs are trees,
they can easily be mapped to DTDs and XSDs for implementation. This paper
also defined a set of transformation rules that can be used to transform DTDs to a
large class of XML schemas and vice versa. Then, this paper provided an algorithm
that inputs users’ requirements and outputs a DTD graph that has a minimum
number of redundancy-free fragments. As a result of these good properties, the
resulting DTD or XSD facilitates query processing and update. In other words,
minimum fragments in XML schema design can reduce query time, that is, less
time to navigate through pointers between fragments. Furthermore, redundancy
free XML schema design can reduce update time, that is, less time to update a
non-redundant element in XML document.

References

1. Y. Chen, S. B. Davidson, C. S. Hara and Y. Zheng, RRXF: Redundancy reducing
XML storage in relations, in Proc. 29th Int. Conf. Very Large Data Bases, pp. 189–
200, Berlin, Germany, September 9–12, 2003.

2. E. F. Codd, Recent investigations in relational data base systems, in IFIP Congr.,
pp. 1017–1021.

3. J. Fong, Information Systems Reengineering and Integration (Springer, 1974).
4. J. Fong, S. Cheung and H. Shiu, The XML tree model: Toward an XML conceptual

schema reversed from XML schema definition, Data Know. Eng. 64(3) (2008) 624–
661.

1550005-28

2nd Reading

October 8, 2015 13:47 WSPC/S0218-8430 111-IJCIS 1550005

Designing Redundancy-Free XML Schema

5. J. E. Funderburk, G. Kiernan and J. Shanmugasundaram, Technical note XTABLES:
Bridging relational technology and XML, IBM Syst. J. 42(3) (2003) 538–541.

6. J. E. Funderburk, G. Kiernan, J. Shanmugasundaram, E. Shekita and C. Wei, XTA-
BLES: Bridging relational technology and XML, IBM Syst. J. 41(4) (2002) 616–641.

7. L. Libkin, Normalization theory for XML, in Proc. 5th Int. XML Database Symp.,
pp. 1–13, Vienna, Austria, September 23–24, 2007.

8. D. Maier, The Theory of Relational Databases (Computer Science Press, Maryland).
9. W. Y. Mok and D. W. Embley, Generating compact redundancy-free XML documents

from conceptual-model hypergraphs, IEEE Trans. Knowl. Data Eng. 18(8) (2006)
1082–1096.

10. W. Y. Mok, J. Fong and D. W. Embley, Extracting a largest redundancy-free XML
storage structure from an acyclic hypergraph in polynomial time, Inf. Syst. 35(7)
(2010) 804–824.

11. W. Y. Mok, J. Fong and D. W. Embley, Generating the fewest redundancy-free scheme
trees from acyclic conceptual-model hypergraphs in polynomial time, Inf. Syst. 41
(2014) 20–44.

12. K. D. Schewe, Redundancy, dependencies and normal forms for XML databases, in
Proc. Sixteenth Australasian Database Conf., pp. 7–16, Newcastle, Australia, 31st
January–3rd February, 2005.

13. M. W. Vincent, J. Liu and C. Liu, Strong functional dependencies and their applica-
tion to normal forms in XML, ACM Trans. Database Syst. 29(3) (2004) 445–462.

14. w3 schools.com (Accessed on 30 October 2014). Introduction to XML Schema,
http://www.w3schools.com/schema/schema intro.asp.

15. J. Wang and R. W. Topor, Removing XML data redundancies using functional and
equality-generating dependencies, in Proc. Sixteenth Australasian Database Conf.,
pp. 65–74, Newcastle, Australia, January 31st–3rd February, 2005.

16. C. Yu and H. V. Jagadish, XML schema refinement through redundancy detection
and normalization, VLDB J. 17(2) (2008) 203–223.

1550005-29

